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A B S T R A C T

We develop a general framework to estimate the proportion of infected snails and snail-human transmission
parameter of a class of models that describes the evolution of schistosomiasis. To do so, we consider simulta-
neously the dynamics of schistosomiasis, captured by the homogeneous version of the classical MacDonald’s
model, and the measurable output: the number of female schistosomes per single host. The proposed method
consists of designing an auxiliary dynamical system, called observer, whose solutions converge exponentially to
those of the system capturing the schistosomiasis model. Moreover, we derive an estimation of the snail-human
transmission rate, an unknown but key parameter in the dynamics of schistosomiasis. These estimations are
central in two of the strategies of controlling schistosomiasis, namely the use of molluscicides and mass drug
administration. To further investigate control strategies on a larger scale, we consider a heterogeneous model
which consists of an arbitrary number of human groups or patches and an arbitrary number of fresh-water
sources, natural habitats of snails. Provided that the data of infected humans’ worm burden in each patch or
group is available, we provide a method of estimating the proportion of infected snails in each snail natural
habitat, thereby providing a map on where to implement control strategy to mitigate or eliminate
Schistosomiasis.

1. Introduction

Schistosomiasis, also known as bilharzia, is a major parasitic disease
that causes over 200 million in morbidity, and over 700 million people
are at risk across the world [18,52]. The disease is prevalent mostly in
tropical and subtropical areas and falls under the umbrella of neglected
tropical diseases and is topped only by malaria in terms of incidence and
economic burden in endemic regions. Consequently, understanding the
mechanisms that drive the transmission Schistosomiasis and providing
tools to control it should be a worldwide priority.

Schistosomiasis is the end-product of a complex biological cycle that
involves two hosts – humans and snails; two free-living transmission
pathogen, namely, cercariae and miracidia; and a variety of environ-
ments. Indeed, the overall transmission goes as follows: Schistosoma
eggs are excreted from humans into the environment via urine or faeces
(depending on the species of schistosomes). The eggs hatch into mir-
acidia after a contact with fresh water. These miracidia infect water
snails by penetrating the latter through their soft tissue, which results in
amplification of the numbers of parasites by asexual reproduction. The
parasite leaves the snail intermediate host as cercariae which can

penetrate the skin of humans in contact with water, thus completing the
life cycle.

Different intervention strategies have been implemented in an at-
tempt to eradicate schistosomiasis or alleviate its morbidity in many
endemic countries [34]. Indeed, mass drug administration campaign
was widely used with varying degrees of success. However, this method
has its own set of challenges due factors such as the development of
drug resistance [34], the difficulties of sustaining coverage of a critical
mass of the target population, and the scarcity of resources to undertake
nationwide programs [26,45]. The second control strategy consists of
controlling the intermediate host snails using chemical molluscicides.
However, there are two main challenges to this control strategy: as-
sessing the number of infected snails in a given fresh-water source, and
assessing which snail habitats to target. The goal of this paper is to
address these two issues.

The use of mathematical models in understanding the dynamics of
the interactions between host and vectors goes back to Ross’ 1911 paper
[40]. Indeed, in [40], Ross provides a model capturing the overall dy-
namics of the malaria, a disease caused by the parasite Plasmodium
falciparum and transmitted between human hosts and female Anopheles
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mosquitoes when the latter bites the former. As mentioned above,
schistosomiasis has a somehow similar but more complex transmission
cycle and its mathematical model was first derived by MacDonald [37]
and later developed in different directions (see [4,8,9,39,49,50] and the
references therein). However, estimating the state variables and/or
parameters of the model is a perennial problem in epidemiology in
general and in understanding the dynamics of schistosomiasis in par-
ticular. For instance, some parameters in schistosomiasis models, such
as the life span of snails, could be obtained experimentally (2–3 years)
[24,46,49] or the life span of the human hosts. Some other parameters,
however, are unknown and very difficult to estimate. This the case for
the snail-human transmission rate. Indeed, this parameter represents a
simplified compound value of a complex biological cascade of events
leading to the infection [9]. And so, estimating the value of this snail-
human transmission term is crucial in a control strategy that consists of
blocking the transmission of schistosomiasis. Furthermore, a facet of
this strategy is the chemical control strategy, in which chemical mol-
luscicides are used to target infected snails in a given environment. This
is also a difficult task as it requires one to distinguish between unin-
fected and infected snails in natural environments. Although some ad
hoc estimations of the snail-human transmission rate exist for particular
cases [24,51], a comprehensive and general method of estimating the
snail-human transmission is lacking. Moreover, to the best of our
knowledge, there is no method in the literature that estimates the in-
fected snail in water source.

In this paper, we use elements of control theory to estimate the
proportion of infected snails in a given freshwater source and the snail-
human transmission rate. To this end, we consider the dynamics of
schistosomiasis along with the measurable output. For schistosomiasis’
dynamical model, we consider the classical MacDonald’s model
[8,9,37] and we assume that the measurable output is the state variable
that represents the number of female schistosomes. Indeed, for schis-
tosomiasis, it is widely reported that it is possible to measure the
number of parasites per hosts [8,13,49,50], using faeces or urine.

Therefore, the first focal point of this paper is to develop a general
framework to estimate the proportion of infected snails and the snail-
human transmission parameter using the available data and the tem-
poral evolution of schistosomiasis. More precisely, the method consists
of constructing an observer. An observer is essentially an auxiliary
dynamical system that uses the available data on some state variables
and/or parameters and delivers dynamical estimates of the unmeasured
state variables. The solutions of this auxiliary dynamical system must
converge (as fast as possible) towards the solutions of the original
system. The notion of observers originates in the theory of systems [36].
The use of this powerful tool of control theory is recent in epidemiology
[1–3,7,14–17,22,23,33,43,44,47]. In estimating the unmeasured pro-
portion of infected snails and the unknown snail-human transmission
rate, our framework allows a better understanding of the schistoso-
miasis dynamics and better implementation of snail control strategies.
After the preliminaries on the observers (Section 2), the bulk of this part
is described in Section 3.

The second focal point of the paper is to address schistosomiasis
transmission on a larger scale. Indeed, schistosomiasis, also known as a
disease of poverty, is endemic in developing countries where resources
are very limited and snail habitats (ponds, marshland, fresh-water
sources, ...) are widespread. And so, determining which snail habitats to
target for biological control or which human age-group(s) or patch(es)
to target for mass drug administration, is a major problem. To deal with
this question, we consider a heterogeneous schistosomiasis model, de-
rived originally by [39] (see also [9,38]). The model consists of human
hosts, structured into l groups or patches, interacting with snails,
structured into m natural habitats (ponds, fresh-water, etc). Assuming
that we could measure the worm burden in hosts in the l host group –
this is a routine technique available in most countries – our method
provides a tool to estimate the proportion of infected snails in each snail
habitat, thereby providing a map to optimize resource allocation in

controlling schistosomiasis. This part is treated in Section 4.

2. Preliminaries

In this section we briefly introduce the notion of observer. Let us
consider a phenomenon whose evolution is captured by a dynamical
system:

=x f x( , ) (1)

where x is the vector representing state variables and θ the vector of
parameters of the considered model. Suppose that only some or a
combination of state variables are available as measurements. In con-
trol theory nomenclature, this quantity is called measurable output and is
denoted by =y h x( ) where h is a smooth function of the state x.

Hence the input-output system that accounts for the dynamics of the
system along with the available data is given by:

=
=

x f x
y h x

( , ),
( ). (2)

An observer is an auxiliary dynamical system that takes into account
the available output into the dynamics of the system and that converges
asymptotically to the original system (1). Particularly, if the vector of
parameters θ is known, an observer of System (1) has the following
form:

=
=

z t g z t y t
x k z t y t

^ ( ) (^ ( ), ( ), ),
^ (^ ( ), ( ), ). (3)

The challenge in designing an observer consists of finding the two
functions g and k in such a way that the solutions of System (3) con-
verge exponentially to that of System (2), irrespective of initial condi-
tions. That is, the functions g and kmust satisfy, for any initial condition
x t^ ( )0 :

x t x t e x t x t( ) ^ ( ) ( ) ^ ( ) ,t
0 0

for some +. When System (1) is linear, the problem of finding an
observer is completely solved by the Luenberger observer [36], and the
possibility of achieving arbitrary fast estimation is equivalent to the so-
called observability property (see below Definition 2.3 and
Theorem 2.1). If the considered system is non-linear, typically, there is
no “off the shelf” method to design an observer (see [11] and the re-
ferences therein for an overview on the observer theory, and [32] for a
short survey of observability and observers with applications to various
life-support-systems).

Throughout the rest of the paper, we will use some terminologies
and notions that we recall in the rest of section.

When the vector of parameters θ is not fully known, it may still be
possible to design an observer for System (2). These type of observers
are defined as follows:

Definition 2.1. An adaptive observer for System (2) is an observer for
joint estimation of the state x(t) and the parameter θ.

An (exponential) adaptive observer for System (2) is a dynamical
system of the form

=

=

=

z t g z t t y t

t g z t t y t

x t k z t t y t

^ ( ) (^ ( ), ^ ( ), ( ))
^ ( ) (^ ( ), ^ ( ), ( ))
^ ( ) (^ ( ), ^ ( ), ( ))

1

2

(4)

such that the solutions of (4) and those of (2) satisfy x t x t^ ( ) ( ) and
t^ ( ) converge (exponentially fast) to zero as time t goes to infinity.
The following two definitions and theorem will be used to prove

some of the results in Sections 3 and 4.

Definition 2.2. A square matrix A is said to be Hurwitz (or stable) if all
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its eigenvalues have negative real parts.

Definition 2.3 (Kalman observability rank condition [48]). Let A be a
n× n matrix and C be a q× n matrix. The pair (A, C) is said to be
observable or to satisfy the Kalman observability rank condition if the
matrix:

=

C
CA
CA

CA

C A

n

( , ) 2

1

is of rank n.

Theorem 2.1 (Pole-Shifting Theorem [48]). If the pair (A, C) satisfies the
Kalman observability rank condition then it is possible to find a matrix K in
such a way that the eigenvalues of the matrix A KC are all with negative
real part.

For linear systems of the form:

=
=

x t Ax t
y t Cx t

( ) ( )
( ) ( ), (5)

Definition 2.3 provides a characterization of the observability of the
corresponding linear system (5). That is, given the measurable output y,
it is possible to determine the behavior of the entire system x from the
system’s output, for all t ∈ [0, T]. Theorem 2.1 guarantees the existence
of a matrix K such that the spectrum of A KC belongs to the open left
half-plane of , for an observable pair (A, C). Therefore, if the linear
system (5) satisfies the Kalman observability rank condition then an
exponential observer is simply given by:

=x t Ax t K Cx t y t^ ( ) ( ) ( ^ ( ) ( ))

since the error =e t x t x t( ) ^ ( ) ( ) satisfies =e t A KC e t( ) ( ) ( ) and the
matrix K can be chosen in such a way that the matrix A KC is Hur-
witz.

In the following section, we design an observer for a schistosomiasis
model in order to estimate the number of infected snails and trans-
mission rate from snails to human hosts.

3. Observer design for a schistosomiasis model

Let w be the number of female schistosomes (worms) per single host
and s the proportion of infected snails. The female schistosomes per
single host decays at a per capita rate γ and are replenished at a rate a.
The latter process is proportional to the proportion of infected snails s.
The proportion of susceptible snails s1 could be infected through an
indirect contact with schistosomes that are excreted from hosts w, and
naturally die at a rate μ. Finally, the overall dynamics of the schisto-
somiasis is captured by the following model:

= +
=

w w as
s b s w µs(1 ) (6)

Model (6) is a version of MacDonald’s model and is proposed first by
Barbour [9] in investigating the dynamics of bilharzia – See also [8,9]
for a more detailed formulation of the model, and [4,10] for a literature
review. It is easy to show that the compact set

= w s w a s{( , ) |0 ; 0 1}2
(7)

is a positively invariant and absorbing set for System (6), making the
solutions biologically substantiated.

It has been documented that the number of female schistosomes
(worms) per single host could be measured using urine or faeces sam-
ples [8,13]. Particularly, authors in [13] provided data of the numbers
of schistosome eggs per gram of feces per host (Fig 1 in [13]). This is a
widespread diagnosis technique for parasitological infections in general

and schistosomiasis in particular. We suppose henceforth that the state
variable w in Model (6) is measured. Thus, the measurable output is

=y t w( ) . By denoting =x w s( , ) ,T the dynamical system that describes
the evolution of schistosomiasis along with the available data could be
written in a compact form as follows:

= +
=

x M x U y x
y C x

( )
, (8)

where =M
a

b µ , =U y by( ) 0 0
0 , and =C (1, 0). As many

models representing a complex system, some of the parameters of
Model (8) are unknown. For instance, the death rates of schistosomes γ,
and infected snails μ, respectively, could be measured by biological
considerations (see [19]). However, transmission parameters are
usually unknown, and the existing proposed values are ad hoc. In the
next two subsections, we design observer to estimate the state variable s
in two cases: when all the parameters are known, and when only one of
the transmission parameters is known. Actually, the proposed observers
provide tools to estimate the state variable s without using the above-
mentioned transmission parameters a. Moreover, we use this observer
to estimate this parameter.

3.1. State variable estimate when all parameters are known

The following theorem provides an observer (state-estimator) using
an output-injection for the system (8).

Theorem 3.1. An exponential estimator for the MacDonald’s Bilharzia
model (6) with measurable output =y t w t( ) ( ) is given by

= +x M x U y x K C x y^ ^ ( ) ^ ( ^ ) (9)

where = +K k a b( , )T
1 for any positive constant k1.

Proof. It suffices to show that the trajectories of System (9) converge
exponentially to those of System (8) for any initial conditions of System
(9). To do so, we show that the equation describing the evolution of the
error =e t x x( ) ^ converges exponentially to zero. Indeed,

=
= +
= +

e x x
M x U y x K C x y M x U y x
M KC e U y e

^
^ ( ) ^ ( ^ ) ( )

( ) ( ) (10)

Let us consider the Lyapunov function = e eT1
2 . The derivative of

along the trajectories of (10) is:

= +

= + + +

= + + +

= + + +

e e e e

M KC e U y e e e M KC e U y e

e M KC e U y e e M KC e U y e

e M KC M KC e e U y U y e

1
2

1
2

1
2

[( ) ( ) ] 1
2

[( ) ( ) ]

1
2

[ ( ) ( )] 1
2

[( ) ( ) ]

1
2

[( ) ( )] 1
2

[ ( ) ( )]

T T

T T

T T T T T

T T T T

(11)

Using the expressions of M, K, C and U given in (8), Eq. (11) leads to:

=e e
k

µ by e( )
0

0
0,

T 1

since y≥0. Moreover, is a quadratic negative-definite function. It
follows that, by Lyapunov’s theorem all trajectories of (10) approach
the origin with an exponential convergence rate as t goes to infinity. We
deduce therefore that System (9) is an exponential observer of System
(8). □

Remark 3.1. In Theorem 3.1 we chose =K k k( , )T
1 2 with = +k a b2 .

However K could be any vector that makes M KC Hurwitz.

D.M. Bichara, et al. Mathematical Biosciences 315 (2019) 108226

3



We carry out numerical simulations to showcase how the overall
behavior of the solutions of the original system (8) compared to the
observer (9). Unless otherwise stated, we use the following parameters:

= = =µ a0.05 day , 0.04 day , 21 1 female worm × day 1 and
=b 0.01 female worm × day1 1. The initial conditions

=w s( (0), (0)) (3, 0.3) and =w s( ^ (0), ^ (0)) (1, 0.1) are used for the sys-
tems (8) and (9), respectively. Fig. 1 displays the dynamics of infected
snails s (red), given by Model (6), and its estimated value, ŝ (blue),
obtained using the observer (9). As anticipated, the curves of ŝ and that
of s(t) merge rather quickly (convergence-time ≈7 days). Moreover,
the merger occurs way before the two systems reach the equilibrium
value (dashed green). It is worthwhile to note that the trajectories given
by the observer (9) converge to those of Model (6), for any initial
conditions of the observer system. This avoids the often difficult task of
estimating the initial conditions to integrate epidemic systems.

3.2. Adaptive observer: a tool to estimate both state variables and
parameters

In Section 3.1, we designed an observer to estimate a state variable,
namely the proportion of infected snails s, given that all the parameters
of the model are known. Indeed, the observer (9) depends on all the
parameters of Model (6). However, unfortunately the values of some
parameters in epidemic models are usually not known. A perennial
problem in epidemic models is the estimation of the transmission
parameters. For the schistosomiasis model, it is the parameter a which
represents the snail-host infection rate that is difficult to estimate [9].
In this section, we design an observer that allows to estimate simulta-
neously the state variable s and the snail-host transmission rate a given
that w is measured. Such observer is called adaptive observer (see for
instance [12] and [11], chap. 7). Let a, the unknown parameter. Using
the linear transformation = + =z z w w as Tx( , ) ( , ) ,T T

1 2 where

=T a
1 0 , Model (6) can be written, with the new coordinates as

= + +
=

z t A B y z t y t a
y C z

( ) ( ( )) ( ) ( ( )) ,
,0 (12)

where = + = =A µ µ B y by y by
0 1

( ) , ( ) 0 0
1 , ( ) 0 , and

=C (1, 0)0 .

Let λ be any positive real number. Define the following functions of
the output y ≔ y(t):

= +
= + + + + + + + +

+ + +
= + + + + + + +

+ + + +

= + +

k y µ b y
k y µ µ b y µ by

by µ
µ µ µ b y µ

by µ

y
by

( ) 3( 1) ,
( ) (2 ) 3 ( 2) 2 3

( 1)( ),
3( ) (2 3 3 )

3 ( 2) 2 3 ( ),

( ) ( 1)( 2) .

1

2
2 2 2 2

2 2 2 2

(13)

The expression of Λ(y) in (13) is well defined since y(t)> 0 for all t≥0
if y(0)> 0. Indeed, y is the measurable output and satisfies the equation

= +y y as. Moreover, we assume that the ecosystem is in an en-

demic situation which means that = >ab
µ

10 and implies [9] that

= >y t y a µ
ab

( ) ¯ 1 0.

The following theorem gives an observer that estimates both the
states variables and the transmission parameter a.

Theorem 3.2. An exponential adaptive observer for System (12) is given by
the following system:

= + +

=

z t A B y z t y t a t K y t C z t y t

a t y t C z t y t

^ ( ) ( ( )) ^ ( ) ( ( )) ^ ( ) ( ( ))( ^ ( ) ( )),
^ ( ) ( ( ))( ^ ( ) ( ))

0

0

(14)

where =K y t k y t k y t( ( )) ( ( ( )), ( ( )))T
1 2 and Λ(y(t)) are defined by

relations (13).

The proof of Theorem 3.2 uses a classical result concerning a class of
time-varying linear systems, which we recall here:

Theorem 3.3 ([20], Chap. IV, Theorem 2). Let D be a constant matrix
whose characteristic roots …, , n1 are all simple, and let ξi be a
characteristic vector of D belonging to the characteristic root λi
( = …i n1, , ). If R(t) is a continuous matrix defined for t≥ t0 such that

<R t dt| ( )| ,
t0

Fig. 1. Coupled dynamics of the proportion of infected snails s(t) (dashed red) as given by System (8) and its estimate s t^ ( ) (blue) as given by the observer (9). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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then the equation = +x D R t x( ( )) has a fundamental system of solutions
…x t x t x t( ), ( ), , ( )n1 2 satisfying for t→∞

= …x t e k n( ) , ( 1, , ).k
t

k
k

The symbol ∼ in Theorem 3.3 denotes the asymptotic equivalence.

Proof of Theorem 3.2.. Recall that the goal is to show that the
error between System (12) and System (14) converges exponentially
to zero. The estimation error = =e t e t e t e t( ) ( ( ), ( ), ( ))a

T
1 2

z t z t z t z t a t a t(^ ( ) ( ), ^ ( ) ( ), ^ ( ) ( ))T
1 1 2 2 satisfies

=

=

e t
k y t

k y t µ b y t µ by t by t
y t

e t

M y t e t

( )
( ( )) 1 0

( ( )) ( ) ( ) ( )
( ( )) 0 0

( )

: ( ( )) ( ).

1

2

(15)

The time-varying matrix M(y) could be written as

=M y A y K y C( ) ˜ ( ) ˜ ( ) ˜,

with =A y µ b y µ by by˜ ( )
0 1 0

0 0 0
, =C̃ (1 0 0), and

=K y
k y
k y

y
˜ ( )

( )
( )
( )

1

2 .

For any fixed y>0, it is not difficult to show that the pair
A y C y( ˜ ( ), ˜ ( )) is observable. That is, it satisfies the Kalman observability
rank condition (see Definition 2.3). Therefore, by the pole-shifting
theorem (see Theorem 2.1), it is possible to find a y dependent gain
K y˜ ( ) such that =sp M y( ( )) { 2, 1, }, where sp(M(y)) de-
notes the spectrum of M(y) and λ is any positive real number. This gain
K y˜ ( ) is given by the relations (13) and can be computed using for in-
stance Ackermann’s formula (see [6] page 382):

= + + + + +K y A y I A y I A y I y˜ ( ) ( ˜ ( ) ). ( ˜ ( ) ( 1) ). ( ˜ ( ) ( 2) ). ( ).
0
0
1

,3 3 3
1

where I3 is the 3× 3 identity matrix and y( ) is the observability
matrix associated to the pair A y C y( ˜ ( ), ˜ ( )) and it is given by

=y
C y

C y A y
C y A y

( )
˜ ( )

˜ ( ) ˜ ( )
˜ ( ) ˜ ( )2

.

The spectrum of the matrix M(y(t)) is fixed, and lies entirely in the
left hand side of the complex plane as the eigenvalues of M(y(t)) are

2, 1 and , with λ>0. We must emphasize that, this, of
course, is not sufficient to conclude that the solutions of =e M y t e( ( ))
converge to zero at an exponential rate since System (15) is a non au-
tonomous system. Now, we will show that System (15) can be written in
the form of = +u D R t u( ( )) , where D is a constant matrix. Under some
conditions on R(t), the behavior of the solutions for these types of non
autonomous systems could be obtained using Theorem 3.3 [20], for
example.

Let = + +D diag( , ( 1), ( 2)) and P(t) the invertible time-
dependent matrix satisfying

=D P t M y t P t( ) ( ( )) ( ).1

A straightforward computation of the eigenvectors of M(y(t)), asso-
ciated with the corresponding eigenvalues leads to determine P(t) and

thus P t( )1 . We successively obtain

=

+ + + +
+ +

+ +
+ +

+
+ +

+
P t by t

µ by t µ by t µ by t

by t by t by t

( ) ( )

1
( 1)( 2)

1
( 2)

1
( 1)

2 3 ( )
( 1)( 2)

2 2 ( )
( 2)

2 1 ( )
( 1)

1
( )

1
( )

1
( )

,

and

=

+ + + + + + + +

+ + + + + + +

+ + + + + + +

P t

µ by t
by t by t

µ by t
by t by t

µ by t
by t by t

1( )

( 1)( 2)( ( ))
2 ( )

( 1)( 2)
2 ( )

( 1)( 2)
2

( 1)( 2)( 1 ( ))
( )

( 1)( 2)
( )

( 2)

( 1)( 2)( 2 ( ))
2 ( )

( 1)( 2)
2 ( )

( 1)
2

.

We perform the change of variable =u P t e( ) ,1 and the new variable u
(t) satisfies the time-varing linear equation

= +u D R t u( ( )) , (16)

where =R t dP t
dt

P t( ) ( ) ( )
1

. A simple computation gives

Therefore, it follows that

= + + +R t y t
y t

by t( ) ( )
( )

(3( 1)( ( )) 3 1) .

The solutions of System (6) evolve in the compact set Ω defined in
(7), so y(t) (= w t( )) is a positive and bounded function of t. We choose λ
large enough in such a way that by t( ) 0. Thus,

= + + +

= + + +

R t y t
y t

by t

y t
y t

b y t

( ) ( )
( )

(3( 1)( ( )) 3 1)

( )
( )

(3 6 1 3 ( 1) ( )).2

= + + +R t y t
y t

b y t( ) (3 6 1) ( )
( )

3 ( 1) ( ) .2

Since System (6) is a planar cooperative system there exists T≥0 such
that y(t) is nonincreasing or nondecreasing on t≥ T (see [41], Chapter
3, Theorem 2.2, page 43, [28], Theorem 3.21, or [29], Proposition 2.5).
This implies that y′(t) changes sign at most once (for ). Using Chasles’
identity, we have =R t dt( )0 +R t dt R t dt( ) ( ) ,T

T0 and

= ± + + +R t dt y t
y t

b y t dt( ) ( )
( )

(3 6 1 3 ( 1) ( )) .
T T

2
(17)

The sign in (17) is positive when y′(t)≥ 0 and negative otherwise.

Thus, we obtain, using the fact that y(t) tends to =y a µ
ab

¯ 1 as t

tends to +

= ± + + +

= ± + + +

<

R t dt y t
y t

dt b y t dt

y
y T

b y y T

( ) (3 6 1) ( )
( )

3 ( 1) ( )

(3 6 1) log ¯
( )

3 ( 1)( ¯ ( ))

.

T T T
2

2

Hence, <R t dt( ) ,0 and so we can apply [20] (Chap. IV, The-
orem 2): the solutions of system (16) satisfy for t→∞

=u t e i( ) , for 1, 2, 3.i
ti

Going back to the error =e t P t u t( ) ( ) ( ), we obtain, for t sufficiently
large, e t y t e e| ( )| ( ( )) | (0)|t with χ being a positive continuous

=
+ + + + +
+ + + +
+ + +

R t y t
y t

by t by t by t
by t by t by t
by t by t by t

( ) ( )
( )

( ( ) 3) ( 1)( ( ) 2) ( 2)( ( ) 1)
( ( ) 2) ( 1)( ( ) 1) ( 2)( ( ))
( ( ) 1) ( 1)( ( )) ( 2)( ( ) 1)

.

1
2

1
2

1
2

1
2

1
2

1
2
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function. Since y(t) is a continuous bounded function, we deduce that
e t C e e| ( )| | (0)|,t

2 for some positive constant C2. This ends the
proof. □

The observer in Theorem 3.2 gives an estimation ẑ of z and, â of a.
Hence, using the linear and invertible transformation =z Tx, we obtain
an estimation of x. Indeed, in the original coordinates =x w s^ ( ^, ^), the
adaptive observer (14) is given by:

=

=

x t a t
b µ by t

x t K y t y t C x t y t

a t y t C x t y t

^ ( )
^( )

( )
^ ( )

1 0
( ( )) 0

( ( )) ( ^ ( ) ( )),

^ ( ) ( ( ))( ^ ( ) ( ))

a t a t

s t
a t^ ( )

1
^ ( )

^ ( )
^ ( ) 0

0

(18)

It is worthwhile noting that the estimators (14) and (18) are com-
pletely independent of a.

Fig. 3 provides the dynamics of z2(t) (red), solution the shifted
system (12) and that of its estimate z t^ ( )2 (dashed blue), obtained using
the corresponding observer (14). The dynamics of the original variable
s(t) and its estimate s t^ ( ) are represented in Fig. 4. The estimate s t^ ( ) is
obtained using the adaptive observer, in original coordinates. That is,
System (18). Also, as expected from Theorem 3.2, z t^ ( )2 (Fig. 3) and s t^ ( )
(Fig. 4) converge exponentially to z2(t) and s(t) respectively. Moreover,
the efficiency of the designed observer is showcased in Fig. 4, as it can
be noticed that the estimated state s t^ ( ) converges toward the state s(t)
much earlier than they both reach the equilibrium value (dashed green
line).

Remark 3.2. The observer (9) and the adaptive observer (18) both
estimate the proportion of infected snails s(t), and for our model and
baseline parameter values, numerical simulations indicate that the
estimations given by both observers converge to the state variables of
Model (8) with approximately the same time period of around 5 days
(see Figs. 1 and 4). However, the adaptive observer (18) allows to
estimate not only the unmeasured state variables but also the unknown
snail-man transmission parameter a. Moreover, numerical simulations
suggest that the adaptive observer (18) is less sensitive to measurement
noise as it can be seen by comparing Figs. 5 and 2, and Figs. 6 and 7.

Remark 3.3. The state and parameters estimation problem for the
MacDonald’s model (6) has been addressed in [44] using high-gain

observer (we refer to [25] for a comprehensive introduction of a high-
gain observer). However, the use of high-gain observer requires the
construction of a prolongation of the vector field that has to be globally
Lipschitz not only on the set Ω but on the whole 2. It is also necessary
to extend the diffeomorphism (defining the coordinates change) to the
whole 2 and this extended diffeomorphism must also be globally
Lipschitz [25]. The explicit construction of these extensions is not an
easy task. The high-gain observer may fail to converge if these Lipschitz
extensions are not used as it has been shown in [27].

In Theorem 3.1, we provided an estimation of the proportion of
infected snails (s(t)) when all parameters are supposedly known. And, in
Theorem 3.2, we designed an adaptive observer to estimate simulta-
neously both the state variable s(t) and a key unknown parameter – the
snail-to-human transmission rate. However, these estimations corre-
spond to our particular set of data, and thus may not be used in the
context of the actual disease control. Indeed, these estimations are
based on Macdonald’s model, a crude representation of the dynamics of
Schistosomiasis. To address parts of the coarseness of Macdonald’s
model, we provide in the following subsection an estimation when the
infection process is represented by a function f(w, s), instead of an ex-
ponential distribution, (Fig. 7).

3.3. State estimate when the snail-host infection process is not known

In estimating the proportion of infected snails, we used MacDonald’s
model (6), for which the snail-human infection term is linear, namely
“a s”. Here, we propose a tool that allows to estimate the proportion of
infected snails when the infection process is captured by any function f
(w, s) whose analytic expression is not necessarily known. Indeed, in
this case, the modified MacDonald’s model could be written as

= +
=
=

w w f w s
s b s w µs
y w

( , )
(1 )
, (19)

or equivalently,

= + +
=

x Gx Ef x g x a
y Cx b

( ) ( ), (20 )
(20 )

Fig. 2. Coupled dynamics of the proportion of infected snails s(t) (dotted red curve) as given by System (8) and its estimate s t^ ( ) (blue) as given by the observer (9)
when the measurements y(t) are corrupted by noise. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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where

= = = =

= =

x w s G b µ E C

g w s b s w b y s

( , ) ,
0

, 1
0 , (1, 0),

and ( , ) 0 0

T

Theorem 3.4. Let =z t z t z t( ) ( ( ), ( )) ,T
1 2 =G I EC G¯ ( ) ,2 =K k k( , ),1 2

with k1> 0, = >k b 02 and =g t byz^ ( ) (0, )T
2 . The following system

= + + +
= +

z G KC z K G KC E y g
x z Ey

( ¯ ) ( ( ¯ ) ) ^,
^ (21)

is an exponential observer for system (19), that is, x t^ ( ) converges
exponentially towards x(t).

Proof. The observer construction is inspired from [30]. Let us decouple
the System (19) from the unknown input =f w s f x( , ) ( ). Indeed, from
Eq. (20b), it follows that

=
= + +
= + +

y Cx
C Gx Ef x g x
CGx CEf x Cg x

( ( ) ( ))
( ) ( ).

Since CE=1, we deduce that =f x y CGx Cg x( ) ( ). Thus, Eq. (20a)
will be decoupled from the unknown input f(x). Indeed, we obtain:

Fig. 3. Dynamics of the state variable z2(t) (dashed red) given by system (12) and its corresponding estimate z t^ ( )2 (blue) delivered by the observer (14). The initial
conditions are such that =z z( (0), (0)) (3, 0.3)1 2 and =z z(^ (0), ^ (0)) (1, 0.1)1 2 . (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 4. Dynamics of proportion of infected snails s(t) (dashed red) and its estimate s t^ ( ) (blue) delivered by the observer (18). The estimation s t^ ( ), of s(t) is obtained
without using the unknown parameter a. The initial conditions are such that =w s( (0), (0)) (3, 0.3) and =z z(^ (0), ^ (0)) (1, 0.1)1 2 . The green dashed line corresponds to
the equilibrium value of s(t), using Model (6). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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= + +x Gx Ey I EC g x¯ ( ) ( ).2

Now it suffices to investigate the dynamics of the error
=e t x t x t( ): ^ ( ) ( ) between Systems (20) and (21). We have:

=
= +

=

=

e x x
G KC e g I EC g x

G KC e by e

k
b k µ by e

^
( ¯ ) ^ ( ) ( )

( ¯ ) 0 0
0 1

0 .

2

1

2 (22)

We choose =k b,2 we then have =d
dt

e t( ( ) ) 22
2

+k e µ b y t e( ( ( )) )1 1
2

2
2 . Since y(t)≥ 0, it follows that

+d
dt

e t k e µe k µ e t( ( ) ) 2( ) 2 min( , ) ( )2
2

1 1
2

2
2

1 2
2. Hence, e t( ) 2

2

e k µ t2 min( , )1 e (0) 2
2 which shows that the estimation error e(t)

converges exponentially towards zero. This ends the proof. □

Remark 3.4. System (21) is called observer with unknown input
[15,21,30,31].

Fig. 5. Dynamics of proportion of infected snails s(t) (dotted red curve) and its estimate s t^ ( ) (blue) when the measurements y(t) are corrupted by noise. The
estimation s t^ ( ), of s(t), is obtained without using the unknown parameter a, using the adaptive observer (18). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison between the estimation of the unknown parameter a, as limit of the solution a t^ ( ) (blue) of the estimator (14) or (18) and the value of a, taking in
the simulations of Model (6). It can be observed that the estimation convergence is quite fast. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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4. Observer design for a patchy schistosomiasis model

In this section, we propose to design an observer for Schistosomiasis
model that accounts for individuals and ponds heterogeneity. Indeed,
we revisit a dynamical model proposed in [39] for which individuals
are structured into l patches or groups that interact with the snails that
are dispatched in m freshwater contact sites or pond locations. Using
the same setup as the homogeneous case and by denoting

= …w w w w( , , , )l1 2 the vector corresponding to the number of female
schistosomes (worms) per host (for l patches or groups) and

= …s s s s( , , , )m1 2 the vector corresponding to the proportion of infected
snails (for m freshwater sites or pond locations). Hence, following [39],
the dynamics of Schistosomiasis that results from the interactions of m
groups of individuals into l freshwater sources is given by:

= +
=

w w As
s s Bw µ s

diag( )
diag( ) diag( ) (23)

where =A a M( ) ( )ij l m, is a nonnegative l×m matrix, which cap-
tures the snail to man transmission, and =B b M( ) ( )ij m l, a non-
negative m× l matrix, which captures the man to snail transmission.
More precisely, aij is the transmission from snails in Pond j to humans of
Patch i and bij is the transmission from humans of Patch i to snails of
Pond j. As for the homogeneous case, +

l is the vector of death rates
of female schistosome in the human host populations, +µ m is the
vector of death rates of snails in the water site. By denoting , the vector

…(1, ,1)T of ,m it could be shown easily (see [39] for instance) that the
set

= +
+w s w A s{( , ) | 0 diag( ) ; 0 }l m 1

is an absorbing and positively invariant set for system (23), thereby
making the solutions of (23) biologically grounded. A detailed for-
mulation of Model (23) and its dynamics can be found in [9,38,39] for
example.

We assume that the measurable output is the vector w. That is, we
measure the worms in humans host in each group. Noting that

=s Bw µ s B w Bw s µ sdiag( ) diag( ) diag( ) diag( ) , and since the
measurable output is =y w, Model (23) along with the measured data
could be written as

= +
=

x M x U y x
y C x

( )
, (24)

where

= = =x w s M
A

B µ
U y By( , ) ,

diag( )
diag( )

, ( ) 0 0
0 diag( ) ,T

and

=C

1 0 0
0 1 0

0 0 1

0 0
0 0

0 0
.

l mcolumns columns

The following theorem gives an exponential observer for System
(24).

Theorem 4.1. An exponential state estimator for System (24) is given by

= +x M x U y x K C x y^ ^ ( ) ^ ( ^ ) (25)

where =K K
K

1

2
with = +K A B,T

2 and K1 any l× l square matrix whose

components are all positive.

Proof. Let =e x x^ , the error between System (25) and System (24).
The evolution of the error equation is = +e M U y K C e( ( ) ) .
Considering the function =V e e1

2
,T we obtain

= + +
+ +

V e K e e µ By e
e A B K e

( diag( )) (diag( ) diag( ))
( ) .

T T T

T T
1 1 1 2 2

2 2 1

Thus, it is possible to find K1 and K2 that make V is negative definite. A
simple choice is = +K A BT

2 and K1> 0. □

The observer obtained in Theorem 4.1 enables the estimation of the
proportion of infected snails in each freshwater site. This is particularly
useful in providing a tool to better control Schistosomiasis, such as
biological control of snails [42] or in allocating resources (such as the
use of chemical molluscicides [35]) at appropriate snails’ freshwater
habitats according to their infected snails importance.

Fig. 7. Comparison between the estimation of the unknown parameter a, as limit of the solution a t^ ( ) (blue curve) of the estimator (14) when the measurements y(t)
are corrupted by noise and the value of a, taking in the simulations of Model (6). It can be observed that the estimation convergence is quite fast. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5. Conclusion and discussions

In this paper, we investigated tools and methods to estimate state
variables and parameters of a class of schistosomiasis models using
elements of control theory. Particularly, we address two fundamental
problems in modeling and control of schistosomiasis transmission.
Namely, we propose a method to estimate the proportion of infected
snails in a given snail habitat and the snail-host transmission parameter.
We revisited the classical MacDonald’s model [4,8,9] for schistoso-
miasis and used the fact that a key state variable could be measured,
namely the worms burden in humans. Our method consists of using
elements of system theory in designing an auxiliary dynamical system,
called observer, that converges exponentially to the original model.

First, we estimated the proportion of infected snails, assuming that
all parameters are known (Theorem 3.1) and when the snail-host
transmission parameter is unknown (Theorem 3.2) in a homogeneous
system. Moreover, using the latter observer, we estimated the unknown
parameter. We then compared the asymptotic value of the obtained
parameter with that a constant valued used in the dynamics of Schis-
tosomiasis model (Fig. 6).

Second, we considered a heterogeneous schistosomiasis model with
an arbitrary number of age-group in the structure of human hosts and
where the snails are distributed into m water sources, considered in
[9,38,39]). We derived a method to estimate the proportion of infected
snails in each snail habitat (Theorem 4.1). This result, we hope, could
help in better designing effective public health policies, particularly in
allocating spare resources where they are needed the most, with respect
to host groups or snail habitats.

In both the homogeneous and heterogeneous cases, we estimated
the snail-human transmission rate. However, the human-snail trans-
mission b is also unknown. This parameter become the WAIFW (Who
Acquires Infection From Whom [5]) matrix B for the heterogeneous
case. This is very challenging as the cross term is nonlinear and is the
subject of an ongoing investigation. In this paper, the observers are
designed with the assumption that the measurable output is a function
continuous in time. However, in real life, one can hope at best to have a
limited number of samples of measurements at discrete times. It would
be interesting to design observer for epidemic models – that are con-
tinuous in time – for which the measurable output is discrete in time.
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