
DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2019140
DYNAMICAL SYSTEMS SERIES B
Volume 24, Number 11, November 2019 pp. 6297–6323

EFFECTS OF MIGRATION ON VECTOR-BORNE DISEASES

WITH FORWARD AND BACKWARD STAGE PROGRESSION

Derdei Mahamat Bichara

Department of Mathematics & Center for Computational and Applied Mathematics
California State University, Fullerton

Fullerton, CA 92831, USA

(Communicated by Sze-Bi Hsu)

Abstract. Is it possible to break the host-vector chain of transmission when

there is an influx of infectious hosts into a näıve population and competent
vector? To address this question, a class of vector-borne disease models with

an arbitrary number of infectious stages that account for immigration of in-

fective individuals is formulated. The proposed model accounts for forward
and backward progression, capturing the mitigation and aggravation to and

from any stages of the infection, respectively. The model has a rich dynamic,

which depends on the patterns of infected immigrant influx into the host pop-
ulation and connectivity of the transfer between infectious classes. We provide

conditions under which the answer of the initial question is positive.

1. Introduction. Vector-borne diseases represent a major public health problem
around the world, cause over one million deaths, one billion cases each year [43], and
more than half of the world’s population is at risk [42]. They are typically associated
with the tropics and subtropics where these diseases are endemic. However, recently
these diseases have expanded their geographical distribution and have been reported
in many temperate countries. For instance, Dengue and Chikungunya have been
reported in France [12, 13, 29, 38], Italy [30, 31], and Portugal [41]. The CDC
recently [8] reported that mosquito, tick, and flea bite borne diseases tripled in the
United States from 2004 through 2016.

Many drivers are reported to be behind the geographic expansion of vector-borne
diseases, including but not limited to trade, travel, climate change, urbanization
and other social upheaval phenomena [20, 21, 32]. Particularly, immigration and
migration have been pointed to be the leading drivers in the emergence of vector-
borne diseases in temperate nations [2]. For instance, a term Airport malaria has
been coined by [18]. Indeed, it describes a malaria infection that has resulted from
the bite of an infected tropical anopheline mosquito by persons whose geographic
history excludes exposure to this vector in its natural habitat [18]. Hereafter, we use
the term “immigrants” to represent both endemic area borne individuals migrating
into a “näıve” area as well as non-endemic area native individuals who acquired an
airport vector-borne disease after a stint in an endemic area. Naturally, the latter
term follows the definition of Airport malaria.
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Moreover, the existence of vector populations that are capable of transmitting
several arboviruses in the US and western Europe has been widely documented.
For instance, the vector Aedes albopictus also known as the Asian tiger mosquito, a
vector competent of transmitting many arbovirus including Japanese encephalitis,
West Nile, and yellow fever, Dengue, etc., to humans [26, 33], is well established in
North America [3, 26, 33] and Europe [26].

Together, the increasing interconnectedness of the world brings an influx of
viremic (latent or infectious) individuals and their epidemiological life-history into
naive geographic areas or populations, and thereby infecting local competent vec-
tor populations. This could potentially create a chain reaction that could lead
to an autochthonous transmission cycle of arboviruses and sporadic outbreaks of
vector-borne diseases in these otherwise naive host populations. For instance, the
presumed index case of Italy’s 2007 Chikungunya outbreak was a man from India
who developed symptoms while visiting relatives in one of the villages where the
outbreak started [31]. Similarly, an estimated 475 cases of imported chikungunya
are reported in mainland France [29] from November 2013 to June 2014, and these
cases are reportedly traced back to travelers returning from the French Caribbean
islands where chikungunya and Dengue are endemic [29]. The 2012 Portugal’s
Dengue outbreak was reported to be imported by a traveler from Venezuela [41]. It
is therefore important the gauge the impacts of infected immigrants of the dynamics
of vector-borne diseases.

Typically, modeling the dynamics of directly transmitted or vector-borne diseases
have often been based on the assumption that the recruitment into the considered
population is completely susceptible, and thereby sweeping the effects of global
movement of individuals across the world at unprecedented levels under the rug.

To the best of our knowledge, Brauer and van den Driessche [6] were the to
first propose a mathematical model that accounts for immigration that includes
infected individuals using an SIS structure in an attempt to study HIV in prisons.
Subsequently, McCluskey and van den Driessche [25] proposed a model studied with
the same features where both immigration of latent and infective are considered, in
the context tuberculosis. These two papers [6, 25] showed that there is no disease-
free equilibrium and that the endemic equilibrium (EE) is globally asymptotically
stable. Indeed, the model proposed in [6] is a two-dimensional, and the Poincaré-
Bendixson theorem has been used to study the global stability of the EE. In [25],
the authors considered model is an SEIS model and a geometric approach [22, 23]
is used to prove the global stability of the EE. Li et al. [15] generalized the before-
mentioned models for staged-progression model – by considering a model with n
infectious stages and a proportion pi of the total influx is incorporated for each
infectious class Ii. The models in the before-mentioned papers are all for directly
transmitted diseases.

Recently, Tumwiine et al. [37] investigated the effects of infected immigrants
using an SIR − SI Ross-Macdonal’s model in the context of malaria and showed
that the disease persists in host and vector populations whenever the proportion
of infected immigrants is non zero. However, their model does not account of
immigration of latent individuals, a critical category as these pass the precautionary
measures of screenings, if these were in place. Moreover, for many vector-borne
diseases, hosts’ infectious period is variable, and infectivity to the vector population
is not homogeneous. Indeed, for Chikungunya, after the incubation period, the
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infectious period consists of two main stages: an acute stage, followed by a long-
lasting chronic and incapacitating arthralgia [34, 40]. Similarly, Chagas disease
is a two-phased disease with a differential infectivity to the vector population [10].
Dengue [9] and tick-borne relapsing fever [19] have been reported to exhibit multiple
stages of infection, with varying parasitemia, thereby leading to a heterogeneous
infectivity to vectors. For directly transmitted diseases, stage-progression models
have been studied in [1, 17, 14]. These investigations do not account for the influx
of infected and infectious individual into the host population, nor do they consider
the relapse phenomenon – or backward stage progression – for which an infectious
host at an advanced stage could improve its infectious state to an earlier stage.

In this paper, we derive and investigate the global behavior of a system that cap-
tures the dynamics of a class of vector-borne models accounting for flux of infected
individuals at different stages of infection. Of particular interest is the impact of
the influx of infected individuals and transfer rates between infectious classes on
the overall the dynamics of the model. The paper is organized as follows:

• We derive a class of vector-borne models with n stages of infection, for which
there is a flux of infected and infectious immigrants at all of these infectious stages.
The formulated model accounts also for the progression and amelioration during
the infectious stages, from an arbitrary stage i to an arbitrary stage j. The transfer
is considered a progression if i > j and an amelioration if i < j (Section 2).

•We completely study the dynamics of the proposed model (Section 3). It turns
out that the model has a variety of dynamics, which depends on the patterns of the
influx infected host into the population and the transfer rate matrix – that describes
the amelioration and deterioration of hosts’ infectivity level. Particularly, we show
that, under certain conditions, it is possible to corral the infectious hosts only
into the classes in which they are replenished and maintain the vector populations
disease-free. A threshold N 2(p0,p, pn+1) plays a critical role for the existence of
such steady-state.

•We provide the global dynamics of the model when there is no influx of infected
individuals into the population, which surprisingly has not been done (Section 3.1).
In this case, the model exhibits the threshold phenomenon – the basic reproduc-
tion number R2

0 determines the outcome of the disease both in host and vector
population. It happens that R2

0 := N 2(0,0, 0).

• Illustrations of the results and numerical simulations are carried out in Sec-
tion 4.

2. Formulation of the model. We consider a disease whose evolution is captured
by a host-vector interaction for which the host population is composed of suscepti-
ble, exposed, recovered and infectious of stage i (1 ≤ i ≤ n). These subpopulations
are denoted respectively by Sh, Eh, Rh and Ii. The total host population is therefore
Nh = Sh+Eh+

∑n
i=1 Ii+Rh. The vector population Nv is composed of susceptible,

exposed, and infectious arthropods; denoted by Sv, Ev, and Iv, respectively.
The total host population is replenished through a constant recruitment, πh,

that includes birth and migratory influx of individuals. Of this constant recruit-
ment, a proportion p0, pi (i = 1, . . . , n) and pn+1 is latent, infectious at stage i
and recovered, respectively. Thus, the total recruitment in the susceptible class

is πh

(
1−

∑n+1
i=0 pi

)
. Naturally, we assume that, for all i, 0 ≤ pi ≤ 1 and 0 ≤∑n+1

i=0 pi < 1.
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Susceptible hosts are infected at the rate aβvh
Iv
Nn

, where a is the biting/landing

rate and βvh is the Host’s infectiousness by arthropod per biting/landing. Vector’s

infection term is captured by aSv
∑n

i=1 βiIi
Nh

, where βi is the vector’s infectiousness
by infected hosts of stage i. This accounts for the differential infectivity of vectors
with respect to hosts’ infectious stages.

Motivated by [15, 16, 24], we incorporate incremental and non-incremental ame-
lioration and recrudescence in the infectivity at each stage of the host’s infection.
For instance, for models in [4, 10, 28], the transitions between infection stages are
incremental, that is, always from stage i to i + 1. However, with vector-borne
diseases, a bite of infected arthropod to an already infected host, say at stage i,
may increase this host’s parasitemia, thereby catapulting its infectious class from
stage i to any stage, say j, where i ≤ j ≤ n. To incorporate this phenomenon,
we denote by γij , the per capita rate at which the host progresses from stage i to
stage j. Similarly, the increase of treatments (which decrease the parasiteamia in
the blood-stream) of vector-borne diseases could alleviate the host’s infection and
therefore, its stage could change form i to k, where 1 ≤ k ≤ i. We denote by δik
the per capita rate at which the host regresses from stage i to stage k, where k ≤ i.
These generalizations are illustrated in Figure 1.

In concert, the overall dynamics of the Host-Vector infection is given by:

Ṡh = πh

(
1−

n+1∑
i=0

pi

)
− a βvh Sh

Iv
Nh
− µhSh

Ėh = p0πh + aβvh Sh
Iv
Nh
− (µh + νh + η)Eh

İ1 = p1πh + νhEh − (µh + η1)I1 − I1
n∑

j=2

γ1j +

n∑
j=2

δj1Ij

İ2 = p2πh − (µh + η2)I2 − I2

(
n∑

j=1,j<2

δ2j +

n∑
j=1,j>2

γ2j

)

+

(
n∑

j=1,j>2

δj2Ij +

n∑
j=1,j<2

γj2Ij

)
...

İi = piπh − (µh + ηi)Ii − Ii

(
n∑

j=1,j<i

δij +

n∑
j=1,j>i

γij

)

+

(
n∑

j=1,j>i

δjiIj +

n∑
j=1,j<i

γjiIj

)

İn = piπh − (µh + ηn)In − In
n−1∑
j=1

γnj +

n−1∑
j=1

δjnIj

Ṙh = pn+1πh +

n∑
i=1

ηiIi − µhR

Ṡv = πv − aSv

n∑
i=1

βiIi
Nh
− (µv + δv)Sv

Ėv = aSv

n∑
i=1

βiIi
Nh
− (µv + νv + δv)Ev

İv = νvEv − (µv + δv)Iv

(1)

To ease the notations, let us denote by
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Host

Sh Eh I1 I2 I3 I4 . . . In Rh

πh

(
1 −

n+1∑

i=0

pi

)

p0πh

aβvhSh
Iv
Nh νhEh

p1πh

γ12I1

γ13I1

γ14I1
γ1nI1

γ24I2

γ2nI2

γ23I2 γ34I3

γ3nI3

γ45I4

γ4nI4
γn−1,nIn−1 ηnIn

pnπh pn+1πh

δ21I2 δ32I3 δ43I4 δ54I5 δn,n−1In

VectorsSv Ev Iv
Λv

aSv

n∑

i=1

βiIi

Nh νvEv

(µv + δv)Sv (µv + δv)Iv
(µv + δv)Ev

δ31I3

δ41I4

δn1In

δ42I4

δn2In

δn3In
δn4In

Figure 1. Flow diagram of Model 1. Note that, to unclutter the
figure, we did not display the arrows that represent the recruit-
ments for I2, I3 and I4. Similarly, the arrows representing the
death, µi, and recovery rates, ηi, in all host classes are not dis-
played.

mij =


δji if i < j,

0 if i = j,

γji if i > j,

and αv = µv + νv + δv, α1 = µh + η1 +
∑n
j=2 γ1j = µh + η1 +

∑n
j=2mj1 and for

i ≥ 2,

αi = µh + ηi +

 n∑
j=1,j<i

δij +

n∑
j=1,j>i

γij


= µh + ηi +

n∑
j=1

mji.

The matrix M = (mij)1≤i,j≤n is the transfer matrix between Host’s infectious
classes and the parameters αi represent the rates at which infected of stage i leave
this stage. The total host population is asymptotically constant. Indeed, its evo-
lution is given by Ṅh = πh − µhNh and thus, it is straightforward to show that

lim
t→∞

Nh =
πh
µh
. Moreover, the subsystem describing the dynamics of the host is tri-

angular, and hence we can disregard the dynamics of the recovered host Rh. Hence,
by abusively denoting lim

t→∞
Nh again by Nh and using the theory of asymptotically

autonomous systems for triangular systems [7, 39], System (1) could equivalently
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be written in a compact form as follows:

Ṡh = πh
(
1− p0 − 1Tp− pn+1

)
− a βvh Sh

Iv
Nh
− µhSh

Ėh = p0πh + aβvh Sh
Iv
Nh
− (µh + νh + η)Eh

İh = πhp + νhEhe1 − (diag(α)−M)Ih

Ṡv = πv − a
Sv
Nh

〈
β | Ih

〉
− (µv + δv)Sv

Ėv = a
Sv
Nh

〈
β | Ih

〉
− (µv + νv + δv)Ev

İv = νvEv − (µv + δv)Iv,

(2)

where Ih = (I1, I2, . . . , In)T , β = (β1, β2, . . . , βn)T , p = (p1, p2, . . . , pn)T , and
M = GT +DT with G = (γij) representing the progression matrix, or forward flow
transition matrix while D = (δij) represents the amelioration matrix, or backward
transition flow matrix. More precisely,

G =


0 γ12 γ13 . . . γ1n
0 0 γ23 . . . γ2n
...

...
. . .

. . .
...

0 0 0 . . . γn−1,n

0 0 0 . . . 0

 and D =


0 0 . . . 0 0
δ21 0 . . . 0 0
...

. . .
. . .

...
...

δn−1,1 δn−1,2 . . . 0 0
δn1 δn2 . . . δn,n−1 0

 .

(3)

The parameters of System (1) are described in Table 2. The flow chart capturing
the infection process is represented in Fig. (1).

Table 1. Description of the parameters used in System (1).

Parameters Description

πh Recruitment of the host
πv Recruitment of vectors
p0 Proportion of latent immigrants
pi Proportion of infectious immigrants at stage i
a Biting rate
µh Host’s natural death rate
βv,h Host’s infectiousness by mosquitoes per biting
βi Vector’s infectiousness by host at stage i per biting
νh Host’s rate at which the exposed individuals become infectious
ηi Per capita recovery rate of an infected host at stage i
γij Host’s per capita progression rate from stage i to j
δij Host’s per capita regression rate from stage i to j
µv Vectors’ natural mortality rate
δv Vectors’ control-induced mortality rate
νv Rate at which the exposed vectors become infectious

Model (2) follows an SEInR − SEI structure. That is, of the host and vector
populations dynamics follow an and SEInR and SEI types of model, respectively.
The choices are make to capture some key features in modeling different vector-
borne diseases. Indeed, many special cases could be obtained from our general
framework to fit a particular arboviral disease. For instance, if νh →∞, the Host’s
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dynamics will be an SInR model. An SIR − SI model have been considered for
malaria [37] and Dengue [11] while an SInR − SI model was deemed more suited
for tick-borne relapsing fever [19, 28].

Model (2) generalizes other models proposed in the literature in the following
five ways:

• If D = 0n,n and γij = 0 for all i, j, except when j = i+ 1, Model (2) consists
of a class of staged progression vector-borne diseases models with an influx of
infected individuals of each class into the considered population. In this case,
– Model (2) extents the existing stage progression vector-borne models to

incorporate a differential proportions of the overall recruitment in all in-
fected classes. This allows us to gauge the impact of imported cases on the
dynamics of vector-borne infections. When p = 0, p0 = 0, in Model (2),
we obtain the model proposed and studied in [4]. Moreover, our model
extends also [28], for which βi = β, for all i and the recruitment con-
stitutes of susceptible individuals only. Our model generalizes also [10],
which considers Chagas disease model with two stages, namely acute and
chronic phases.

– Model (2) generalizes existing models that investigate staged-progression
for directly transmitted infections for which influx of infected individuals
are considered [15, 25] and [6], where no stages are considered in the
latter.

– Model (2) extends also the model in [37], where the authors considered a
host-vector model SIR − SI with infectious immigrants in investigating
the effects of the latter on Malaria dynamics, by incorporating a latent
class, n stages of infection in the host’s dynamics and a differential infec-
tivity of vectors with respect to host’s infectious stages.

• If D and G are as defined in (3), our model extends [4, 6, 10, 15, 25, 28, 37]
by incorporating forward (deterioration) and backward (amelioration) stage
progression. Moreover, the progressions or regressions are not necessarily
incremental.

• Model (2) extends the models considered in [15, 16, 24] to vector-borne dis-
ease models and the incorporation of influx of infected in each of the hosts’
infectious classes.

Overall, Model (2) generalizes in some fashion or aspect models in [4, 6, 10, 15, 16,
25, 28, 37, 24].

Also, it is worthwhile to notice that our system could be seen as a class of
models for vector-borne diseases that are vertically transmitted at each stage of the
infection. That is, when off-springs are infected by mothers during pregnancy or
delivery. Zika virus is a natural example of a vector-borne disease that is vertically
transmitted [35].

The following result shows the solutions of Model (2) are positive and remain
bounded at all times, thereby making the model biologically grounded.

Lemma 2.1. The set

Ω =

{
(Sh, Eh, Ih, Sv, Ev, Iv) ∈ IRn+5 | Sh + Eh + 1

T Ih ≤ Nh :=
πh
µh
,

Sv + Ev + Iv ≤ Nv :=
πv

µv + δv

}



6304 DERDEI MAHAMAT BICHARA

is a compact positively invariant for System (2).

In the next section, we investigate the steady states solutions of Model (2) and
their asymptotic behavior.

3. Global stability analysis. The next theorem establishes the existence of en-
demic equilibria of System (2) and provides conditions under which they may exist.
Following Thieme [36], we use the nomenclature strongly endemic equilibrium if all
of its components are positive and weakly endemic equilibrium, if at least one of
the infected component is positive. Naturally, we start with the assumption that
p 6= 0IRn . The case p = 0IRn is dealt in Section 3.1.

Theorem 3.1. The equilibria of System (2) are as follows:

1. If β = 0, a unique weakly endemic equilibrium (S̄h, Ēh, Īh, S̄v, 0, 0) exists.
2. If β 6= 0 and p0 6= 0, it exists a unique strongly endemic equilibrium (S∗h, E

∗
h,

I∗h, S
∗
v , E

∗
v , I
∗
v ).

3. If β and p are such that
〈
β | (diag(α) − M)−1p

〉
6= 0, a unique strongly

endemic equilibrium (S]h, E
]
h, I

]
h, S

]
v, E

]
v, I

]
v) exists.

4. If Item 1, Item 2 and Item 3 are not satisfied, then a threshold N 2
0 (p0,p, pn+1),

defined by

N 2
0 (p,p, pn+1)

=
a2βvhνvνhNv

αv(µv + δv)αhµh

πh
(
1− p0 − 1Tp− pn+1

)
N2
h

〈
β | (diag(α)−M)−1e1

〉
,

exists and for which
• If N 2

0 (p0,p, pn+1) ≤ 1, a unique weakly endemic equilibrium (S�h, 0, I
�
h, S

0
v ,

0, 0) where I�h > 0 exists.

• If N 2
0 (p0,p, pn+1) > 1, a unique strongly endemic equilibrium (S̃h, Ẽh, Ĩh,

S̃v, Ẽv, Ĩv) exists.

Proof. An equilibrium (S∗h, E
∗
h, I
∗
h, . . . , I

∗
n, S

∗
v , E

∗
v , I
∗
v ) for Model (2) satisfies the fol-

lowing relations. 

Λh = a βvh S
∗
h

I∗v
Nh

+ µhS
∗
h

(µh + νh + η)E∗h = p0πh + βvh S
∗
h

I∗v
Nh

(diag(α)−M)I∗h = πhp + νhE
∗
he1

πv = a
S∗v
Nh

〈
β | I∗h

〉
+ (µv + δv)S

∗
v

(µv + νv + δv)E
∗
v = a

S∗v
Nh

〈
β | I∗h

〉
(µv + δv)I

∗
v = νvE

∗
v ,

(4)

where Λh = πh
(
1− p0 − 1tp− pn+1

)
. Using these relationship and Nv = Sv −

Ev − Iv, one could express I∗v in terms of I∗h, as follows:

I∗v

(
µv + δv +

a

Nh

〈
β | I∗h

〉)
=

aνv
(µv + νv + δv)

Nv
Nh

〈
β | I∗h

〉
. (5)

Moreover, the first equation of (4) leads to:

S∗h =
ΛhNh

µhNh + aβvhI∗v
> 0.
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Furthermore, since the matrix diag(α)−M is strictly diagonally dominant and thus
invertible, we obtain:

I∗h = πh(diag(α)−M)−1p + νhE
∗
h(diag(α)−M)−1e1,

and

E∗h =
1

(µh + νh + η)

(
p0πh +

Λha βvhI
∗
v

µhNh + aβvhI∗v

)
.

Therefore, I∗h could be written as:

I∗h = πh(diag(α)−M)−1p+
νh

(µh + νh + η)

(
p0πh +

Λha βvhI
∗
v

µhNh + aβvhI∗v

)
(diag(α)−M)−1e1.

(6)
The relation (6) is key for the remaining of the proof, as we will use it to compute〈
β | I∗h

〉
and obtain a quadratic equation in I∗v using Equation (5). The latter

equation leads to:

0 = I∗v

(
µv + δv +

a

Nh

〈
β |πh(diag(α)−M)−1p

〉
+

+
a

Nh

νh
(µh + νh + η)

(
p0πh +

Λha βvhI
∗
v

µhNh + aβvhI∗v

)〈
β |(diag(α)−M)−1e1

〉)
−

aνv
(µv + νv + δv)

Nv

Nh

〈
β |πh(diag(α)−M)−1p

〉
−

νhNv

(µh + νh + η)Nh

(
p0πh +

Λha βvhI
∗
v

µhNh + aβvhI∗v

)
aνv

(µv + νv + δv)

〈
β | (diag(α)−M)−1e1

〉
(7)

After some rearrangement, Equation (7) could be written as

AI∗v
2 +BI∗v + C = 0, (8)

where

A = aβvh

[
µv + δv +

a

Nh

〈
β |πh(diag(α)−M)−1p

〉
+

+
a

Nh

νh
(µh + νh + η)

(p0πh + Λh)
〈
β |(diag(α)−M)−1e1

〉]
> 0,

B = (µv + δv)µnNh +
a

Nh
πh
〈
β | (diag(α)−M)−1p

〉
µhNh

+
a

Nh

νh
(µh + νh + η)

p0πh
〈
β |(diag(α)−M)−1e1

〉
µnNh

− a2βvhνv
(µv + νv + δv)

Nv
Nh

πh
〈
β | (diag(α)−M)−1p

〉
− a2βvhνvνh

(µv + νv + δv)(µh + νh + η)

Nv
Nh

p0πh
〈
β | (diag(α)−M)−1e1

〉
− a2βvhνvνh

(µv + νv + δv)(µh + νh + η)

Nv
Nh

Λh
〈
β | (diag(α)−M)−1e1

〉
,
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and

C = − aνv
(µv + νv + δv)

Nv
Nh

πhµhNh
〈
β |πh(diag(α)−M)−1p

〉
− aνvNv

(µv + νv + δv)

Nv
Nh

νhµhNh
(µh + νh + η)

p0πh
〈
β | (diag(α)−M)−1e1

〉
.

Now, we investigate cases for which Equation (7) has non-negative solutions.
• If β = 0, then C = 0 and B = (µv + δv)µnNh > 0. Hence, I∗v = 0 is the unique

solution of the quadratic equation. Thus, the unique equilibrium for System (2) is
(S̄h, Ēh, Īh, S̄v, 0, 0), where S̄h = Λh

µh
, Ēh = pπh

(µh+νh+η) , Ī∗h = πh(diag(α)−M)−1p +
νhpπh

(µh+νh+η) (diag(α)−M)−1e1, and S̄v = Λv

µv+δv
. This proves Item 1.

• If β 6= 0 and p0 6= 0, then C < 0 and therefore Equation (8) has a unique
solution such that I∗v > 0. Thus, from Equation (6), System (4), and using the fact
that (diag(α)−M)−1e1 � 0, we deduce Item 2.

• If β and p are such that
〈
β | (diag(α)−M)−1p

〉
6= 0, then we also have C < 0;

that is, it exists a unique I]v > 0 of Equation (8). As in the previous point, this
leads to Item 3.
• If the conditions of Item 1, Item 2 and Item 3 are not satisfied; that is, if β 6= 0,

p0 = 0 and p is such that
〈
β | (diag(α) −M)−1p

〉
= 0. In this case, C = 0 and B

could be written as:

B = (µv + δv)µhNh

− a2βvhνvνh
(µv + νv + δv)(µh + νh + η)

Nv
Nh

Λh
〈
β | (diag(α)−M)−1e1

〉
= (µv + δv)µhNh

[
1 −

a2βvhνvνh
(µv + νv + δv)(µv + δv)(µh + νh + η)µh

Nv
Nh

Λh
Nh

〈
β | (diag(α)−M)−1e1

〉]
= (µv + δv)µhNh

(
1−N 2

0 (p0,p, pn+1)
)
.

Thus, it follows that if N 2
0 (p0,p, pn+1) ≤ 1, then B ≥ 0, leading to I∗v = 0 and

I∗h = πh(diag(α)−M)−1p > 0IRn . If N 2
0 (p0,p, pn+1) > 1, then B < 0 and therefore

I∗v > 0, leading to a strongly positive equilibrium.

The different scenarios presented in Theorem 3.1 have intuitive interpretations
as follows:

• The condition of Item 1 – β = 0IRn – means that the local vector population
is not competent to acquire the infectious pathogen. And so, even if there is
an influx of infected or infectious hosts into the naive population, the vector
population stays disease free and there will be infected or infectious hosts in
population, due to the continuous influx of latent or infectious hosts. Thus,
the system reaches an weakly endemic equilibrium.

• The condition of Item 2 – β 6= 0 and p0 6= 0 – means that if the vector is
competent in acquiring the infectious agent, then the influx of latent individ-
uals into the population is sufficient for the disease to persist within the host
and vector populations. This condition leads to the existence of a strongly
endemic equilibrium.

• The condition of Item 3 – β and p are such that
〈
β | (diag(α)−M)−1p

〉
6= 0 –

states that if the patterns of the arthropod’s competency to different stages of
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the hosts’ infectivity and those of the influx of infectious hosts’ into the naive
population and the transfer matrix M that describes the flow between the
infectious classes, are such that the above condition is satisfied, the disease will
persist in host and vector populations. This case include also the case where
the set of indices of vector competency and the set of indices for infectious
influx are disjoint. That is, the host in whichever infectious stage in which
there is an influx of infectious hosts, will not able to transmit the pathogen
to the vector population. In this particular case, the forward and backward
transition patterns (from any stage to another) allow the infection to persist
in the host and vector population.

• The condition of Item 4 – p0 = 0, β, p the transition matrix M are such that〈
β | (diag(α)−M)−1p

〉
= 0 – means that there is no influx of latent hosts and

that: a) there is an influx of infectious individuals only to a subset of stages
and that the hosts in these stages are unable to infect the vectors and b.)
the infectious hosts at these stages do not “ameliorate” or “deteriorate” their
infectiosity to stages in the complement of the subset in which they belong.
In this case the disease either persists in all hosts and vector population or
dies out in the vector population and persists in host population only through
migration, depending on whether the threshold N 2

0 (p0,p, pn+1) is above or
under unity, respectively.

The following two theorems establish the global stability analysis for the two types
of endemic equilibria exhibited in Theorem 3.1. This gives a complete description of
the global asymptotic behavior of System (2) whenever there is an influx of infected
or infectious individuals into the population.

Theorem 3.2. Let (S∗h, E
∗
h, I
∗
h, S

∗
v , E

∗
v , I
∗
v ) be a strongly endemic equilibrium of

Model (2). This equilibrium is globally asymptotically stable whenever it exists.

Proof. Let consider the following Lyapunov function V = Vh + Vv, where

Vh = c0

∫ Sh

S∗
h

(
1− S∗h

x

)
dx+ c0

∫ Eh

E∗
h

(
1− E∗h

x

)
dx+

n∑
i=1

ci

∫ Ii

I∗i

(
1− I∗i

x

)
dx,

and,

Vv = cv

∫ Sv

S∗
v

(
1− S∗

v

x

)
dx+ cv

∫ Ev

E∗
v

(
1− E∗

v

x

)
dx+

µv + νv + δv
νv

cv

∫ Iv

I∗v

(
1− I∗v

x

)
dx.

The coefficients c = (c1, c2, . . . , cn)T are positive to be determined later. The coef-
ficient c0 and cv are related to c1 as follows:

c0aβvh S
∗
h

I∗v
Nh

= c1νhE
∗
h and cvaS

∗
v

1

Nh
= c1

νhE
∗
h∑n

i=1 βiI
∗
i

. (9)

This function is definite positive. We want to prove that its derivative along the
trajectories of System (2) is definite-negative. Throughout the proof, we will be
using the component-wise endemic relations (4). That is,
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πh

(
1−

n+1∑
i=0

pi

)
= a βvh S

∗
h

I∗v
Nh

+ µhS
∗
h

(µh + νh + η)E∗h = p0πh + aβvh S
∗
h

I∗v
Nh

α1I
∗
1 = p1πh + νhE

∗
h +

n∑
j=2

m1jI
∗
j

α2I
∗
2 = p2πh +

n∑
j=1

m2jI
∗
j

...

αiI
∗
i = piπh +

n∑
j=1

mijI
∗
j

αnI
∗
n = pnπh +

n∑
j=1

mnjI
∗
j

Λv = aS∗v

n∑
i=1

βiI
∗
i

Nh
+ (µv + δv)S

∗
v

(µv + νv + δv)E
∗
v = aS∗v

n∑
i=1

βiI
∗
i

Nh

(µv + δv)I
∗
v = νvE

∗
v

(10)

The derivative of Vh along the trajectories of System (2) is:

V̇h = c0

(
1− S∗h

Sh

)
Ṡh + c0

(
1− E∗h

Eh

)
Ėh +

n∑
i=1

ci

(
1− I∗i

Ii

)
İi

= c0µhS
∗
h

(
2− Sh

S∗h
− S∗h
Sh

)
+ c0aβvhS

∗
h

I∗v
Nh

(
2− S∗h

Sh
− Sh
S∗h

Iv
I∗v

E∗h
Eh

)
+c0p0π

(
2− E∗h

Eh
− Eh
E∗h

)
− c0

(
βvh S

∗
h

I∗v
Nh

)
Eh
E∗h

+ c0a βvhS
∗
h

Iv
Nh

+

n∑
i=1

ci

(
1− I∗i

Ii

)
İi. (11)

Using the endemic relation α1I
∗
1 = p1πh + νhE

∗
h +

n∑
j=1

m1jI
∗
j , and the relationship

between c0 and c1, Equation (11) yields to

V̇h = c0µhS
∗
h

(
2− Sh

S∗h
− S∗h
Sh

)
+ c0aβvhS

∗
h

I∗v
Nh

(
3− S∗h

Sh
− Sh
S∗h

Iv
I∗v

E∗h
Eh
− Eh
E∗h

I∗1
I1

)
+c0p0π

(
2− E∗h

Eh
− Eh
E∗h

)
+ c0a βvhS

∗
h

Iv
Nh

+ c1p1πh

(
2− I∗1

I1
− I1
I∗1

)

−c1

νhE∗h +

n∑
j=1

m1jI
∗
j

 I1
I∗1

+ c1

n∑
j=1

m1jIj + c1

n∑
j=1

m1jI
∗
j

−c1
I∗1
I1

(

n∑
j=1

m1jIj) +

n∑
i=2

ci

(
1− I∗i

Ii

)
İi (12)
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Noting that, from the endemic relations (10), we have αiI
∗
i = piπh +

∑n
j=1mijI

∗
j ,

and thus, the last term of Equation (12) leads to

ci

(
1− I∗i

Ii

)
İi = cipiπh

(
2− I∗i

Ii
− Ii
I∗i

)
+ ci

n∑
j=1

mijI
∗
j − ci

 n∑
j=1

mijI
∗
j

 Ii
I∗i

+ci

n∑
j=1

mijIj − ci
I∗i
Ii

 n∑
j=1

mijIj

 (13)

Moreover, we can check that the derivative of Vv along the trajectories of System
(2) is:

V̇v = cv,1

(
Av +

n∑
i=1

aS∗v
βiI
∗
i

Ni

(
3− S∗v

Sv
− Sv
S∗v

Ii
I∗i

E∗v
Ev
− EvI

∗
v

E∗vIv

)

+ aS∗v

n∑
i=1

βiIi
Nh
− aS∗v

n∑
i=1

βiI
∗
i

Nh

Iv
I∗v

)
, (14)

where Av = (µv + δv)S
∗
v

(
2− S∗v

Sv
− Sv
S∗v

)
. Combining equations (12), (13), and

(14), we obtain:

V̇ = c0µhS
∗
h

(
2− Sh

S∗h
− S∗h
Sh

)
+ c0aβvhS

∗
h

I∗v
Nh

(
3− S∗h

Sh
− Sh
S∗h

Iv
I∗v

E∗h
Eh
− Eh
E∗h

I∗1
I1

)
+c0p0π

(
2− E∗h

Eh
− Eh
E∗h

)
+ c0a βvhS

∗
h

Iv
Nh

+

n∑
i=1

cipiπh

(
2− I∗i

Ii
− Ii
I∗i

)

−c1

νhE∗h +

n∑
j=1

m1jI
∗
j

 I1
I∗1

+ c1

n∑
j=1

m1jIj + c1

n∑
j=1

m1jI
∗
j

−c1
I∗1
I1

 n∑
j=1

m1jIj

+ cv,1

(
+aS∗v

n∑
i=1

βiIi
Nh
− aS∗v

n∑
i=1

βiI
∗
i

Nh

Iv
I∗v

)

+

n∑
i=2

ci n∑
j=1

mijI
∗
j − ci

 n∑
j=1

mijI
∗
j

 Ii
I∗i

+ ci

n∑
j=1

mijIj

−ci
I∗i
Ii

 n∑
j=1

mijIj

+ cv,1Av

+cv,1

n∑
i=1

aS∗v
βiI
∗
i

Ni

(
3− S∗v

Sv
− Sv
S∗v

Ii
I∗i

E∗v
Ev
− EvI

∗
v

E∗vIv

)
(15)

Given the relationship (9), the linear terms in Iv in Equation (15) cancel. Further-
more, by substituting Av by its expression and cv,1 by their expressions, Equation
(15) leads to

V̇ = c0µhS
∗
h

(
2− Sh

S∗
h

− S∗
h

Sh

)
+ cv,1(µv + δv)S∗

v

(
2− S∗

v

Sv
− Sv

S∗
v

)
+c0p0π

(
2− E∗

h

Eh
− Eh

E∗
h

)
+

n∑
i=1

cipiπh

(
2− I∗i

Ii
− Ii
I∗i

)



6310 DERDEI MAHAMAT BICHARA

+cv,1

n∑
i=1

aS∗
v
βiI

∗
i

Ni

(
6− S∗

h

Sh
− Sh

S∗
h

Iv
I∗v

E∗
h

Eh
− Eh

E∗
h

I∗1
I1
− S∗

v

Sv
− Sv

S∗
v

Ii
I∗i

E∗
v

Ev
− EvI

∗
v

E∗
vIv

)

−c1

(
νhE

∗
h +

n∑
j=1

m1jI
∗
j

)
I1
I∗1

+ c1

n∑
j=1

m1jIj + c1

n∑
j=1

m1jI
∗
j

−c1
I∗1
I1

(
n∑

j=1

m1jIj

)
+

n∑
i=2

[
ci

n∑
j=1

mijI
∗
j − ci

(
n∑

j=1

mijI
∗
j

)
Ii
I∗i

+ci

n∑
j=1

mijIj − ci
I∗i
Ii

(
n∑

j=1

mijIj

)]
+ c1

νhE
∗
h∑n

l=1 βlI
∗
l

(
n∑

i=1

βiIi

)
. (16)

We choose the vector c = (c1, c2, . . . , cn)T to be the solution of the linear system
Bc = 0, where

B =



−�11 m21I
∗
1 m31I

∗
1 . . . . . . mn1I

∗
1

νhE
∗
h

β2I
∗
2∑n

i=1 βiI∗i
+m12I

∗
2 −�22 m32I

∗
2 . . . . . . mn2I

∗
2

νhE
∗
h

β3I
∗
3∑n

i=1 βiI∗i
+m13I

∗
3 m23I

∗
3 −�33 . . . . . . mn3I

∗
n

...
...

...
. . .

. . .
...

νhE
∗
h

βnI
∗
n∑n

i=1 βiI∗i
+m1nI

∗
n m2nI

∗
n m3nI

∗
n . . . . . . −�nn


(17)

where

�11 =

νhE∗h∑n
i=2 βiI

∗
i∑n

i=1 βiI
∗
i

+

n∑
j=1

m1jI
∗
j

 , and for k ≥ 2, �kk =

n∑
j=1

mkjI
∗
j .

The matrix B is irreducible. Indeed, since I∗h � 0, we notice that all elements of the
second upper diagonal of B are all non zero, as mi+1,i = γi,i+1, and thus represent
the incremental transition between infectious classes. This, along with the first col-
umn, makes the matrix B irreducible. Hence, it could be shown that dim(ker(B)) =
1; and by the Kirchhoff’s matrix tree theorem[5, 27], ci = −Cii � 0 where Cii is
the cofactor of the ith diagonal of B. Hence, it exists c = (c1, c2, . . . , cn)T � 0 such
that Bc = 0. Moreover, this implies that, in Equation (16), we have:

0 = −c1

νhE∗h +

n∑
j=1

m1jI
∗
j

 I1
I∗1

+ c1

n∑
j=1

m1jIj + c1

n∑
j=1

m1jI
∗
j

+

n∑
i=2

ci n∑
j=1

mijI
∗
j − ci

 n∑
j=1

mijI
∗
j

 Ii
I∗i

+ ci

n∑
j=1

mijIj


+c1

νhE
∗
h∑n

l=1 βlI
∗
l

(
n∑
i=1

βiIi

)
Thus, (16) yields to:

V̇ = c0µhS
∗
h

(
2− Sh

S∗h
− S∗h
Sh

)
+ cv,1(µv + δv)S

∗
v

(
2− S∗v

Sv
− Sv
S∗v

)
+ c0p0π

(
2− E∗h

Eh
− Eh
E∗h

)
+

n∑
i=1

cipiπh

(
2− I∗i

Ii
− Ii
I∗i

)
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+ cv,1

n∑
i=1

aS∗v
βiI
∗
i

Ni

(
6− S∗h

Sh
− Sh
S∗h

Iv
I∗v

E∗h
Eh
− Eh
E∗h

I∗1
I1
− S∗v
Sv
− Sv
S∗v

Ii
I∗i

E∗v
Ev
− EvI

∗
v

E∗vIv

)
︸ ︷︷ ︸

Wi

+

n∑
i=1

n∑
j=1

cimijI
∗
j

(
1− I∗i

Ii

I∗j
Ij

)
. (18)

The first three terms of (18) are definite-positive. Now, we will break down
the last two terms in (18) into definite-negative terms. Indeed, following [16], we
transform each theses expressions as sums of terms in the form of f(x) = 1−x+lnx.
To this end, we will use the fact that the function f(x) is definite negative around
x∗ = 1. Indeed, using the properties of natural logarithm function, the expression
of Wi in (18) could be written as:

Wi = 6− S∗
h

Sh
− Sh

S∗
h

Iv
I∗v

E∗
h

Eh
− Eh

E∗
h

I∗1
I1
− S∗

v

Sv
− Sv

S∗
v

Ii
I∗i

E∗
v

Ev
− EvI

∗
v

E∗
vIv

=

(
1− S∗

h

Sh
+ ln

S∗
h

Sh

)
+

(
1− Sh

S∗
h

Iv
I∗v

E∗
h

Eh
+ ln

ShIvE
∗
h

S∗
hI

∗
vEh

)
+

(
1− EvI

∗
v

E∗
vIv

+ ln
EvI

∗
v

E∗
vIv

)
+

(
1− Eh

E∗
h

I∗1
I1

+ ln
EhI

∗
1

E∗
hI1

)
+

(
1− SvIiE

∗
v

S∗
vI

∗
i Ev

+ ln
SvIiE

∗
v

S∗
vI

∗
i Ev

)
+

(
1− S∗

v

Sv
+ ln

S∗
v

Sv

)
+ ln

I1
I∗1

I∗i
Ii
.

Noting that

1− I∗i
Ii

Ij
I∗j

= 1− I∗i
Ii

Ij
I∗j

+ ln
I∗i Ij
IiI∗j

+ ln
IiI
∗
j

I∗i Ij
,

and substituting the expression of Wi, Equation (18) becomes

V̇ = c0µhS
∗
h

(
2− Sh

S∗h
− S∗h
Sh

)
+ cv,1(µv + δv)S

∗
v

(
2− S∗v

Sv
− Sv
S∗v

)
+ cv,1aS

∗
v

n∑
i=1

βiI
∗
i

Nh

[(
1− S∗h

Sh
+ ln

S∗h
Sh

)
+

(
1− Sh

S∗h

Iv
I∗v

E∗h
Eh

+ ln
ShIvE

∗
h

S∗hI
∗
vEh

)
+

(
1− EvI

∗
v

E∗vIv
+ ln

EvI
∗
v

E∗vIv

)
+

(
1− Eh

E∗h

I∗1
I1

+ ln
EhI

∗
1

E∗hI1

)
+

(
1− SvIiE

∗
v

S∗vI
∗
i Ev

+ ln
SvIiE

∗
v

S∗vI
∗
i Ev

)
+

(
1− S∗v

Sv
+ ln

S∗v
Sv

)]
+ c0pπ

(
2− E∗h

Eh
− Eh
E∗h

)
+

n∑
i=1

cipiπh

(
2− I∗i

Ii
− Ii
I∗i

)
+

n∑
i=1

ci

n∑
j=1

mijI
∗
j

(
1− I∗i

Ii

Ij
I∗j

+ ln
I∗i Ij
IiI∗j

)

+ cv,1aS
∗
v

n∑
i=1

βiI
∗
i

Nh
ln
I1
I∗1

I∗i
Ii

+

n∑
i=1

ci

n∑
j=1

mijI
∗
j ln

IiI
∗
j

I∗i Ij︸ ︷︷ ︸
S

. (19)

All but the last two sums in (19) are definite negative. Let us denote by S the sum
of these two sums. We focus on proving that S := 0. Indeed, recall the expression
of cv,1 in terms of c1, given in (9):

cv,1
aS∗v
Nh

= c1
νhE

∗
h∑n

l=1 βlI
∗
l

.
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By replacing cv,1 by its value in S, we obtain,

S = cv,1aS
∗
v

n∑
i=1

βiI
∗
i

Nh
ln
I1
I∗1

I∗i
Ii

+

n∑
i=1

ci

n∑
j=1

mijI
∗
j ln

IiI
∗
j

I∗i Ij

= c1
νhE

∗
h∑n

l=1 βlI
∗
l

n∑
i=1

βiI
∗
i ln

I1
I∗1

I∗i
Ii

+

n∑
i=1

ci

n∑
j=1

mijI
∗
j ln

IiI
∗
j

I∗i Ij

= c1

n∑
j=1

ln
I1I
∗
j

I∗1 Ij

[
νhE

∗
h∑n

l=1 βlI
∗
l

βjI
∗
j +m1jI

∗
j

]
+

n∑
i=2

ci

n∑
j=1

mijI
∗
j ln

IiI
∗
j

I∗i Ij
(20)

However, since ci are the components of the solution of Bc = 0 where B is given in
(17), it follows that, for any j ≥ 2,

c1

(
νhE

∗
h

βjI
∗
j∑n

l=1 βlI
∗
l

+m1jI
∗
j

)
= cj

(
n∑
k=1

mjkI
∗
k

)
−

n∑
i=2

cimijI
∗
j ,

Plugging this expression into Equation (20), and using again the properties of nat-
ural logarithms, we obtain:

S =

n∑
j=1

ln
I1I
∗
j

I∗1 Ij

[
cj

(
n∑
k=1

mjkI
∗
k

)
−

n∑
i=2

cimijI
∗
j

]
+

n∑
i=2

ci

n∑
j=1

mijI
∗
j ln

IiI
∗
j

I∗i Ij

=

n∑
i=1

ci ln
I1I
∗
i

I∗1 Ii

(
n∑
k=1

mikI
∗
k

)
+

n∑
i=2

ci

n∑
j=1

mijI
∗
j

[
− ln

I1I
∗
j

I∗1 Ij
+ ln

IiI
∗
j

I∗i Ij

]

=

n∑
i=2

ci ln
I1I
∗
i

I∗1 Ii

 n∑
j=1

mijI
∗
j

+

n∑
i=2

ci

n∑
j=1

mijI
∗
j

[
ln
I∗1 Ii
I1I∗i

]
:= 0, (21)

since for i = 1, the coefficient of the sum is ln 1 = 0. Finally using Equation (19)
and Equation (21), the derivative of V along the trajectories of Equation (2) is

V̇ = c0µhS
∗
h

(
2− Sh

S∗h
− S∗h
Sh

)
+ cv,1(µv + δv)S

∗
v

(
2− S∗v

Sv
− Sv
S∗v

)
+ cv,1aS

∗
v

n∑
i=1

βiI
∗
i

Nh

[(
1− S∗h

Sh
+ ln

S∗h
Sh

)
+

(
1− Sh

S∗h

Iv
I∗v

E∗h
Eh

+ ln
ShIvE

∗
h

S∗hI
∗
vEh

)
+

(
1− EvI

∗
v

E∗vIv
+ ln

EvI
∗
v

E∗vIv

)
+

(
1− Eh

E∗h

I∗1
I1

+ ln
EhI

∗
1

E∗hI1

)
+

(
1− SvIiE

∗
v

S∗vI
∗
i Ev

+ ln
SvIiE

∗
v

S∗vI
∗
i Ev

)
+

(
1− S∗v

Sv
+ ln

S∗v
Sv

)]
+ c0p0π

(
2− E∗h

Eh
− Eh
E∗h

)
+

n∑
i=1

cipiπh

(
2− I∗i

Ii
− Ii
I∗i

)
+

n∑
i=1

ci

n∑
j=1

mijI
∗
j

(
1− I∗i

Ii

Ij
I∗j

+ ln
I∗i Ij
IiI∗j

)
, (22)

which is definite-negative. Therefore, by Lyapunov’s stability theorem, the unique
endemic equilibrium is GAS.

Theorem 3.3. Let (S�h, 0, I
�
h, S

0
v , 0, 0) be a weakly endemic equilibrium of Model

(2). This equilibrium is GAS.
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Proof. Let (S�h, 0, I
�
h, S

0
v , 0, 0) be a weakly endemic equilibrium of Model (2).

• If β = 0, we remark from the vector’s equations in Model (2) that Sv →
S0
v := πv

µv+δv
, Ev → 0 and Iv → 0 as t → ∞. So, by the theory of asymptotically

autonomous systems for triangular systems [7, 39], Model (2) is equivalent to
Ṡh = πh

(
1−

n+1∑
i=0

pi

)
− µhSh

Ėh = p0πh − (µh + νh + η)Eh
İh = πhp + νhEhe1 − (diag(α)−M)Ih

(23)

System (23) is triangular and linear, and its solutions converge toward (S̄h, Ēh, Īh),

where S̄h := Λh

µh
, Ēh := p0πh

µh+νh+η and Īh := (diag(α) −M)−1
(
πhp + νhp0πh

µh+νh+η e1

)
.

Thus, it follows that the weak endemic equilibrium (S̄h, Ēh, Īh, S
0
v , 0, 0) of Model

(2) is GAS.
Before we start the proof of the next case, let us define the order relation for the

vectors as follows: u ≤ v if ui ≤ vi, for all i, where ui and vi are components of u
and v respectively. Similarly, u < v if u ≤ v and u 6= v. Also u � v if ui > vi, for
all i.
• If Item 4 of Theorem 3.1 is satisfied with N 2

0 (p0,p, pn+1) ≤ 1. That is, β 6= 0,

p0 = 0 and p and M are such that
〈
β | (diag(α)−M)−1p

〉
= 0. These imply that,

using the endemic relations,

(diag(α)−M)−1p > 0.

Moreover, it follows that
〈
β | I�h

〉
= 0. This implies that it exists a subset J of

{1, 2, . . . , n} such that I�i = 0, for all i ∈ J , I�i > 0 for i ∈ {1, 2, . . . , n} \ J ; and
β�i > 0 for i ∈ {1, 2, . . . , n} \ J , and β�i = 0 for i ∈ J . WLOG, suppose that J =
{1, 2, . . . , s− 1} with s ≥ 2. Hence, the endemic relation I�h = πh(diag(α)−M)−1p

and the condition
〈
β | (diag(α)−M)−1p

〉
= 0 imply that M has the form

M =

(
M11 0s−1,n−s+1

M21 M22

)
,

where M11 ∈ Ms−1,s−1, M21 ∈ Mn−s+1,s−1, M22 ∈ Mn−s+1,n−s+1. Similarly,
pi = 0 for all i ∈ J and I�h = (0, . . . , 0, I�s , . . . , I

�
n) where I�i > 0 for s ≤ i ≤ n.

Let c = (c1, c2)T where c1 = (c1, . . . , cs−1)T and c2 = (cs, . . . , cn)T . The vector

c2 is the solution of B̃c2 = 0 where

B̃ =


−b̃s,s ms+1,sI

�
s ms+2,sI

�
s . . . . . . mn,sI

�
s

ms,s+1I
�
s+1 −b̃s+1,s+1 ms+2,s+1I

�
s+1 . . . . . . mn,s+1I

�
s+1

ms,s+2I
�
s+2 ms+1,s+2I

�
s+2 −b̃33 . . . . . . mn,s+2I

�
s+2

...
...

...
. . .

. . .
...

ms,nI
�
n ms+1,nI

�
n ms+2,nI

�
n . . . . . . −b̃nn

 ,

where b̃kk =
∑n
j=smkjI

�
j for s ≤ k ≤ n. Since M22 is irreducible and I�i > 0 for

all s ≤ i ≤ n, the matrix B̃ is irreducible. Moreover, B̃ is the Laplacian matrix of
the graph interconnecting the stages Ii for s ≤ i ≤ n. Hence, as previously stated,
Kirchhoff’s matrix tree theorem affirms that the solution of B̃c2 = 0 is such that
ci = −Cii � 0, where Cii is the cofactor of ith diagonal element of B̃. Hence
c2 � 0.
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Let I�h = (I�1, I
�
2)T and consider the Lyapunov function candidate V = Vh + Vv,

where

Vh = c1
νh
αh
Eh +

〈
c1 | I1

〉
+

n∑
i=s

ci

∫ Ii

I�i

(
1− I�i

x

)
dx, and Vv = cvEv + cv

αv
νv
Iv,

where cv = c1
νh
αh

aβvhΛh

µhNh

νv
(µv+δv)αv

, c1 is positive vector to be determined later. The

derivative of V along the trajectories of System (2) is:

V̇h = c1
νh
αh
Ėh +

〈
c1 | İ�1

〉
+

n∑
i=s

ci

(
1− I�i

Ii

)
İi + cvĖv + cv

αv
νv
İv

= c1a βvh
νh
αh

ShIv
Nh

+
〈
c1 | (−diag(α̃) +M11)I1

〉
+

n∑
i=s

ci

(
1− I�i

Ii

)
İi,(24)

where α̃ = (α1, . . . , αs−1). Moreover, as in the proof of Theorem 3.2, using the fact,

for that, for 1 ≤ i ≤ n, the ci are the components of the solution of B̃c2 = 0 and

n∑
i=s

ci

n∑
j=s

mijI
�
j

(
1− I�i

Ii

Ij
I�j

)
=

n∑
i=s

ci

n∑
j=s

mijI
�
j

(
1− I�i

Ii

Ij
I�j

+ ln
I�i
Ii

Ij
I�j

)
,

it could be shown that Equation (24) implies that

n∑
i=s

ci

(
1− I∗i

Ii

)
İi =

n∑
i=s

cipiπh

(
2− I�i

Ii
− Ii
I�i

)
+

n∑
i=s

ci

n∑
j=s

mijI
�
j

(
1− I�i

Ii

Ij
I�j

+ ln
I�i
Ii

Ij
I�j

)
−

n∑
i=s

ci
I�i
Ii

s−1∑
i=1

mijIj +

n∑
i=s

ci

s−1∑
j=1

mijIj

:=

n∑
i=s

cipiπh

(
2− I∗i

Ii
− Ii
I∗i

)
+

n∑
i=s

ci

n∑
j=s

mijI
�
j

(
1− I�i

Ii

Ij
I�j

+ ln
I�i
Ii

Ij
I�j

)
−

n∑
i=s

ci
I�i
Ii

s−1∑
i=1

mijIj + cT2 M21I1. (25)

We choose c1 to be the solution of (−diag(α̃) + MT
11 + β̄ẽT1 )c1 = −MT

21c2, where

β̄ = a2βvhΛh

µhNh

νvνh
(µv+δv)αvαh

Nv

Nh
β̃, with β̃ = (β1, . . . , βs−1) and ẽ1 the fist canonical

vector of IRs−1. This solution exists and c1 ≥ 0 since c2 � 0 and −(−diag(α̃) +
MT

11 + β̄ẽT1 )−1 ≥ 0 as −diag(α̃) +MT
11 + β̄ẽT1 is a Metzler invertible matrix.

Hence, Equations (24) and (25) leads to

V̇h = c1a βvh
νh
αh

ShIv
Nh

+
〈
c1 | (−diag(α̃) +M11)I1

〉
+

n∑
i=s

cipiπh

(
2− I�i

Ii
− Ii
I�i

)

+

n∑
i=s

ci

n∑
j=s

mijI
�
j

(
1− I�i

Ii

Ij
I�j

+ ln
I�i
Ii

Ij
I�j

)
−

n∑
i=s

ci
I�i
Ii

s−1∑
i=1

mijIj

+ cT2 M21I1. (26)
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However,〈
c1 | (−diag(α̃) +M11)I1

〉
+ cT2 M21I1 =

〈
(−diag(α̃) +MT

11)c1 +MT
21c2 | I1

〉
=−

〈
β̄ẽT1 c1 | I1

〉
:=− c1

a2βvhΛhNv
µhN2

h

νvνh
(µv + δv)αvαh

〈
β̃ | I1

〉
.

Hence, Equation (26) leads to

V̇h =c1a βvh
νh
αh

ShIv
Nh

+

n∑
i=s

cipiπh

(
2− I�i

Ii
− Ii
I�i

)
− c1

a2βvhΛhNv
µhN2

h

νvνh
〈
β̃ | I1

〉
(µv + δv)αvαh

+

n∑
i=s

ci

n∑
j=s

mijI
�
j

(
1− I�i

Ii

Ij
I�j

+ ln
I�i
Ii

Ij
I�j

)
−

n∑
i=s

ci
I�i
Ii

s−1∑
i=1

mijIj . (27)

We can check that derivative of Vv along the trajectories of (2)

V̇v = cvĖv + cv
αv
νv
İv

= cv

(
a
Sv
Nh

〈
β | Ih

〉
− αvEv

)
+ cv

αv
νv

(νvEv − (µv + δv)Iv)

= c1a
2 βvhΛh
µhNh

νvνh
(µv + δv)αvαh

Sv
Nh

〈
β | Ih

〉
− c1

νh
αh

aβvhΛh
µhNh

Iv

= c1a
2 βvhΛh
µhNh

νvνh
(µv + δv)αvαh

Sv
Nh

〈
β̃ | I1

〉
− c1

νh
αh

aβvhΛh
µhNh

Iv, (28)

since
〈
β | Ih

〉
=
〈
β̃ | I1

〉
. Finally, the derivative of V = Vh+Vv along the trajectories

of (2) is obtained by combining Equation (27) and Equation (28) as follows:

V̇ = c1a βvh
νh
αh

1

Nh

(
Sh −

Λh
µh

)
Iv − c1

a2βvhΛh
µhNh

νvνh
(µv + δv)αvαh

Sv −Nv
Nh

〈
β̃ | I1

〉
+

n∑
i=s

cipiπh

(
2− I�i

Ii
− Ii
I�i

)
+

n∑
i=s

ci

n∑
j=s

mijI
�
j

(
1− I�i

Ii

Ij
I�j

+ ln
I�i
Ii

Ij
I�j

)

−
n∑
i=s

ci
I�i
Ii

s−1∑
i=1

mijIj .

Moreover, using the equation of Ṡh and Ṡv in Model (2), it is straightforward that

Sh ≤ Λh

µh
and Sv ≤ Nv := πv

µv+δv
, where Λh = πh

(
1−

n+1∑
i=0

pi

)
. Hence V̇ ≤ 0.

Therefore, by Lyapunov’s theorem this proves the stability of the weakly endemic
equilibrium (S�h, 0, I

�
h, S

0
v , 0, 0). Furthermore, V̇ is the sum of five nonpositive terms,

of which two are definite-negative. Hence, it is straightforward that the largest
invariant set on which V̇ = 0 is reduced to (S�h, 0, I

�
h, S

0
v , 0, 0). Thus, by LaSalle’s

principle, (S�h, 0, I
�
h, S

0
v , 0, 0) is asymptotically stable. This completes the proof of

the global asymptotic stability of the weakly endemic equilibrium (S�h, 0, I
�
h, S

0
v , 0, 0).

Per Theorem 3.1, Item 4, a necessary condition to break the host-vector trans-
mission, that is, to maintain the vectors disease-free, is p = 0 and

〈
β | (diag(α) −

M)−1p
〉

= 0. The later quantity has an epidemiological interpretation. Indeed, it
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means that: a.) there is an influx of infected individuals only to a subset of indices
and that the hosts in these stages are unable to infect the vectors and b.) the in-
fectious hosts at these stages do not “ameliorate” their infectiosity to stages in the
complement of the subset in which they belong. That is, δij = 0 for all i ∈ A and
j ∈ {1, 2, . . . , n}\A, with pj > 0 for all j ∈ A and pj = 0 otherwise. In this case, the
threshold N 2

0 (p0,p, pn+1) determine whether or not the vector populations become
disease-free. If N 2

0 (p0,p, pn+1) < 1, the disease dies out in the vector population
and it thus, the infectious hosts are contained only into the classes in which they are
replenished. This threshold captures the capacity of hosts in stage A to maintain
the disease in the vector population. Indeed, we can show that:

N 2
0 (p0,p, pn+1) =

a2βvhνvνhNv
αv(µv + δv)αhµh

πh

(
1−

n+1∑
i=0

pi

)
N2
h

〈
β | (diag(α)−M)−1e1

〉

:=
a2βvhνvνhNv

αv(µv + δv)αhµh

πh

(
1−

n+1∑
i=0

pi

)
N2
h

〈
β̃ | (diag(α̃)−M11)−1e1

〉
In the light of Theorem 3.1, Item 4; Theorem 3.2, and Theorem 3.3, to break the
host-vector chain of transmission when there is an influx of infectious hosts into
a näıve population and competent vector, a necessary and sufficient condition is
p0 = 0, the vectors β, p; and the transition matrix M are such that

〈
β | (diag(α)−

M)−1p
〉

= 0 and N 2
0 (p0,p, pn+1) ≤ 1, thereby providing for a positive answer to

our initial claim.

3.1. Sharp threshold property. In this subsection, we investigate the dynamics
of Model (2) when p = p1 = · · · = pn = 0. In this case, we obtain the model

Ṡh = πh − a βvh Sh
Iv
Nh
− µhSh

Ėh = a βvh Sh
Iv
Nh
− (µh + νh + η)Eh

İh = νhEhe1 − (diag(α)−M)Ih

Ṡv = Λv − a
Sv
Nh

〈
βT | Ih

〉
− (µv + δv)Sv

Ėv = a
Sv
Nh

〈
βT | Ih

〉
− (µv + νv + δv)Ev

İv = νvEv − (µv + δv)Iv

(29)

For the same reason evoked in Section 2, the solutions of System (29) stay positive
and bounded. Unlike in Model (2), the Model (29) has a disease free equilibrium
(DFE), and is given by (S0

h, 0, 0, S
0
v , 0, 0) with S0

h = πh

µh
and S0

v = πv

µv+δv
.

The basic reproduction number R2
0 is derived using the next generation method.

An explicit expression of it is given by

R2
0 =

a2βvhνhνvNv
(µh + νh + η)(νv + µv + δv)(νv + δv)Nh

βT (diag(α)−M)−1e1

:= N 2
0 (0,0, 0).

Note that since the matrix is M is Metzler (off-diagonal elements are non-negative)
and invertible, we have −M−1 ≥ 0. Thus, R2

0 ≥ 0. The following theorem gives
the complete asymptotic behavior of Model (29).
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Theorem 3.4. 1. If R2
0 ≤ 1, the DFE is globally asymptotically stable.

2. If R2
0 > 1, the DFE is unstable and a unique endemic equilibrium exists and

is GAS.

The proof of the first part of Theorem 3.4 follows using, for example, a left-
eigenvector argument. We omit the details. The second part is particular case of
Theorem 3.2. This result is new in itself.

4. Illustrations and simulations. In this section, we provide illustrations to
highlight the effects of influx of immigrants and the transfer matrix on the disease
dynamics and provide some numerical simulations to showcase the results of Sec-
tion 3. To do so, we consider the case n = 4. That is, there are four infectious
stages in the host’s infectivity. Unless otherwise stated, we consider the following
baseline parameters:

πh = 1000, a = 0.7, βvh = 0.3, µh =
1

75× 365
days−1, νh =

1

15
days−1,

γ12 =
1

8
days−1, γ23 = γ34 =

1

6
days−1,

1

η
= 0 days−1, η1 =

1

50
days−1,

η2 = η3 =
1

30
days−1, η4 =

1

40
days−1,

πv = 10000, µv =
1

15
days−1, νv =

1

4
days−1, δv =

1

20
days−1.

It is worthwhile noting that, although reasonable, these values do not necessarily
match any particular arbovirus diseases. We have chosen them to encompass results
of Section 3. The transfer matrix M and the vector proportions of influx of infected
p are given by

M =


0 δ21 δ31 δ41

γ12 0 δ32 δ42

γ13 γ23 0 δ43

γ14 γ24 γ34 0

 , p =


p1

p2

p3

p4

 .

We vary the parameter p, the vector p and the matrix M to investigate their impacts
on the disease dynamics.

Figure 2(a) and Figure 2(b) depict the dynamics of the Model (2) when there is
no transmission form hosts to vectors. That is, whenever β = 0IRn . In this case,
with p 6= 0IRn , the infected hosts reach an endemic level ( Figure 2(a)) while the
disease dies out in the vector population (Figure 2(b)). This is in accordance is the
prediction of Theorem 3.1, Item 1, where the weakly endemic equilibrium is GAS
(Theorem 3.2).

For β = (0.2, 0, 0, 0.5)T 6= 0IR4 and p0 = 0.01, the trajectories converge to a
strongly endemic equilibrium (Figure 2(c) and Figure 2(d)) as the hypotheses of
Theorem 3.1, Item 2 are satisfied.

To illustrate Theorem 3.1, Item 3, suppose that β = (β1, 0, 0, 0)T and p =
(0, 0, p3, p4)T where β1 > 0, p3 > 0 and p4 > 0. By choosing γ14 = γ24 = δ21 =
δ31 = δ42 = 0, we obtain:

βT (diag(α)−M)−1p =
β1α2δ41(p3γ34 + p4α3)

det(diag(α)−M))
> 0. (30)

Using this setup, Item 3 of Theorem 3.1 anticipates the existence of an strongly en-
demic equilibrium. Indeed, Figure 3 represents the dynamics of hosts (Figure 3(a))
and vectors (Figure 3(b)) in Model (2) in this case.
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(a) Dynamics of infectious hosts Ii, for i =

1, . . . , 4 when β = 0IRn .
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(b) Dynamics of infected vectors when

β = 0IRn .
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(c) Dynamics of infected hosts when

β 6= 0IR4 and p0 = 0.01 6= 0
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(d) Dynamics of infected vectors when

β 6= 0IRn and p0 = 0.01 6= 0.

Figure 2. Effects of host-vector transmission on the dynamics of
Model (2) with n = 4. The proportions of infectious influx are
p1 = 0.2, p3 = 0.1, p4 = 0 and p5 = 0.3. The transfer matrix
M is such as γ13 = γ24 = 0.1, γ14 = 0.2, δ21 = 0.01, δ31 = 0.02,
δ41 = 0.001, δ32 = 0.03, δ42 = 0.01 and δ43 = 0.03.
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(a) Dynamics of infectious hosts Ii, for i =

1, . . . , 4.
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(b) Dynamics of infected vectors.

Figure 3. Dynamics of infected hosts and vectors when the hy-
potheses of Theorem 3.1, Item 3 are satisfied. The proportions of
infectious influx are p0 = 0, p = (0, 0, p3, p4)T = (0, 0, 0.2, 0.0001)T

and p5 = 0.3. The transfer matrix M is such as γ13 = 0.1,
γ14 = γ24 = 0, δ21 = 0.01, δ31 = δ32 = δ42 = 0, δ41 = 0.035,
and δ43 = 0.03.
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By choosing δ41 = 0, Equation (30) implies that βT (diag(α) −M)−1p = 0 and
thus satisfying the conditions of Theorem 3.1, Item 4. And so, a weakly endemic
equilibrium (S�h, 0, I

�
h, S

0
v , 0, 0) or a strongly endemic equilibrium (S̃h, Ẽh, Ĩh, S̃v, Ẽv,

Ĩv) exists depending on whether N 2
0 (p0,p, pn+1) is below or greater than unity,

respectively. Figure 4(a) shows that the hosts’ infection dies out at stage 1 and
2 while it persists at stage 3 and 4. The disease dies out the vectors’ population
(Figure 4(b)). It is worthwhile noting that the disease is maintained at stages 1
and 2, due to the influx of infectious individuals at these stages, without whom,
the interaction between hosts and vectors is not sufficient to sustain the infectious.
That is, N 2

0 (p0,p, pn+1) ≤ 1. Under the same transfer matrix M and the infectious
influx p configurations, but choosing the entomological parameters a = 0.9 and
βvh = 0.9, we obtain N 2

0 (p0,p, pn+1) = 1.6051 > 1. This leads to a strongly
endemic equilibrium (Figure 5(a) and Figure 5(b)).
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1, . . . , 4.

0 100 200 300 400 500 600 700 800

0

5

10

15

20

25

30

35

(b) Dynamics of infected and infectious vec-
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(c) Dynamics of susceptible and latent hosts.
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(d) Dynamics of susceptible vectors.

Figure 4. Dynamics of infected hosts and vectors when the hy-
potheses of Theorem 3.1, Item 4 are satisfied. The proportions of
infectious influx are p0 = 0, p = (0, 0, p3, p4)T = (0, 0, 0.2, 0.0001)T

and p5 = 0.3. The transfer matrix M is such as γ13 = 0.1,
γ14 = γ24 = 0, δ21 = 0.01, δ31 = δ32 = δ41 = δ42 = 0, and
δ43 = 0.03. With these parameters, N 2

0 = 0.3237 ≤ 1. As ex-
pected, the vector population will be disease-free (Figure 4(b) and
Figure 4(d)) and the infectious hosts are generated only through
influx of infectious immigrants at stage 3 and 4 (Figure 4(a) and
Figure 4(c)).
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(a) Dynamics of infectious hosts Ii, for i =
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0 >

1.

Figure 5. Dynamics of infected hosts and vectors when the hy-
potheses of Theorem 3.1, Item 4 are satisfied. The proportions of
infectious influx are p0 = 0, p = (0, 0, p3, p4)T = (0, 0, 0.2, 0.0001)T

and p5 = 0.3. The transfer matrix M is such as γ13 = 0.1,
γ14 = γ24 = 0, δ21 = 0.01, δ31 = δ32 = δ41 = δ42 = 0,
and δ43 = 0.03. Using the values a = 0.9 and βvh = 0.9,
N 2

0 = 1.6051 > 1, and thus the trajectories of the system con-
verge towards an interior equilibrium.

5. Conclusion. Modeling the dynamics of vector-borne diseases have often been
based on the assumption that the recruitment into the population is completely
susceptible, and thereby making it difficult to assess the effects of the infected
or infectious individuals who enters the population. However, the recent surge of
vector-borne diseases such as Chikunguyna and Dengue in areas previously free from
the pre-cited diseases, that also coincides with an increase of global travel across
the world, makes the study of the effects of new arrivals on vector-borne diseases
dynamics a necessity. Indeed, the arrival of new individuals from endemic areas, or
the return of local residents after a stint in areas where the vector-borne diseases
are endemic, could potentially result in infecting the local vector populations and
the cycle of host-vector infection could start or accelerate.

In this paper, we formulate a general staged-progression and stage-regression
vector-borne diseases to capture some key features of their dynamics. Particularly,
we investigate the effects of the, often swept under the rug, influx of viremic in-
dividuals into the hosts and vectors’ population dynamics. We also explore the
impacts of treatment and repeated exposure. Indeed, assuming the infectious indi-
viduals in the population are undergoing a treatment program, whereby improving
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their health status; this could lead an infectious individual to go from stage i to a
“lower” stage k, where 1 ≤ k ≤ i. Similarly, the repeated exposure of infected hosts
to infected vectors could lead to more infectious bite. This could lead to an increase
of infected and infectious hosts’ level of parasitemia and thus worsening its health
status. In this case, the infected host progresses from stage i to an “upper” stage
k where 1 ≤ i ≤ k. And so, we incorporate of these two phenomena of progression
and regression on the hosts’ dynamics, which happens to have an altering effects on
the qualitative dynamics of the model.

We derive a class of vector-borne model with n infectious stages. The host-vector
dynamics follows an SEInR − SEI framework. We assume that a proportion – of
the overall recruitment – p0 and pi, for i = 1, 2, . . . , n, of latent and infectious at
stage i, respectively, enter into the population. An infectious host at stage i could
improve its status from stage i to j, with j ≤ i, at a rate δij or worsen its viremicity
from stage i to stage k, with k ≥ i, at a rate γik. We derived all steady states of
the general system and provided conditions under which they exist (Theorem 3.1).
It turns out that the model has multiple equilibria, depending on the connectivity
configuration between host’s infectious stages and the influx of infectious arrivals.
However, all of the equilibria are either strongly endemic (SEE) – for which all of
the infected and infectious components are positive –, or weakly endemic (WEE) –
for which some of host and vectors’ infected or infectious classes are zero. We show
that the influx of latent individuals into the population guarantees the existence of
an SEE, and we prove the global asymptotically stability of all equilibria whenever
they exist (Theorem 3.2 and Theorem 3.3).

An important particular case is when there is no influx of latent individuals (p0 =
0) but the host-vector transmission vector β, the proportion of influx of infectious

p and the transfer rates matrix M are such that βT (diag(α)−M)−1p = 0. In fact,
if these conditions are satisfied, it is possible to break the host-vector transmission
cycle. Moreover, these conditions have a biological interpretation. Indeed, it means
that: a) there is no latent influx and b) there is an influx of infectious hosts only at
some stages of infection and the hosts at these stages neither infect the vectors nor
they “ameliorate” or “deteriorate” to stages that infect the vector population. This
later condition is captured by βT (diag(α)−M)−1p = 0. More particularly, if these
conditions are satisfied, we show that the dynamics of the disease is determined by
the threshold N 2

0 (p0,p, pn+1). The disease will die out in the vector population if
N 2

0 (p0,p, pn+1) is below unity and persists otherwise. In summary, it is possible
to break the host-vector chain of transmission when there is an influx of infectious
hosts into a näıve population and competent vector if, and only if p0 = 0, β, p and
M are such that βT (diag(α)−M)−1p = 0.

Our results show that when there is no influx of infected and infectious individ-
uals, the considered model becomes a vector-borne disease with n infectious stages
that accounts for amelioration from and progression to any stages. We show that
this model has a sharp threshold phenomenon, for which the dynamics is completely
determined by the basic reproduction number R2

0 (Theorem 3.4). It turns out that
R2

0 = N 2
0 (0,0, 0), and if R2

0 ≤ 1, the disease-free equilibrium exists and is globally
asymptotically stable. Moreover, if R2

0 > 1, we show that an endemic equilibrium
exists and is globally asymptotically stable.

Acknowledgments. The author is grateful to an anonymous referee for valuable
comments and suggestions that led to an improvement of this paper.



6322 DERDEI MAHAMAT BICHARA

REFERENCES

[1] N. Bame, S. Bowong, J. Mbang, G. Sallet and J. Tewa, Global stability for seis models with
n latent classes, Math. Biosci. Eng., 5 (2008), 20–33.

[2] E. D. Barnett and P. F. Walker, Role of immigrants and migrants in emerging infectious
diseases, Medical Clinics of North America, 92 (2008), 1447–1458.

[3] M. Q. Benedict, R. S. Levine, W. A. Hawley and L. P. Lounibos, Spread of the tiger: Global

risk of invasion by the mosquito aedes albopictus, Vector-borne and Zoonotic Diseases, 7
(2007), 76–85.

[4] D. Bichara, A. Iggidr and L. Smith, Multi-stage vector-borne zoonoses models: A global

analysis, Bulletin of Mathematical Biology, 80 (2018), 1810–1848.
[5] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184. Springer-Verlag,

New York, 1998.

[6] F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of
infectives, Math. Biosci., 171 (2001), 143–154.

[7] C. Castillo-Chavez and H. R. Thieme, Asymptotically Autonomous Epidemic Models, in

Mathematical Population Dynamics: Analysis of Heterogeneity, Volume One: Theory of
Epidemics, O. Arino, A. D.E., and M. Kimmel, eds., Wuerz, 1995.

[8] Centers for Disease Control and Prevention, Illnesses from mosquito, tick, and flea bites
increasing in the us, Centers for Disease Control and Prevention, https://www.cdc.gov/

media/releases/2018/p0501-vs-vector-borne.html, (2018).

[9] G. Chowell, P. Diaz-Duenas, J. Miller, A. Alcazar-Velazco, J. Hyman, P. Fenimore and
C. Castillo-Chavez, Estimation of the reproduction number of dengue fever from spatial epi-

demic data, Mathematical biosciences, 208 (2007), 571–589.

[10] G. Cruz-Pacheco, L. Esteva and C. Vargas, Control measures for chagas disease, Mathematical
biosciences, 237 (2012), 49–60.

[11] L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci.,

150 (1998), 131–151.
[12] E. A. Gould, P. Gallian, X. De Lamballerie and R. N. Charrel, First cases of autochthonous

dengue fever and chikungunya fever in france: From bad dream to reality!, Clinical Microbi-

ology and Infection, 16 (2010), 1702–1704.
[13] M. Grandadam, V. Caro, S. Plumet, J.-M. Thiberge, Y. Souares, A.-B. Failloux, H. J. Tolou,

M. Budelot, D. Cosserat, I. Leparc-Goffart and P. Desprès, Chikungunya virus, southeastern
france, Emerging Infectious Diseases, 17 (2011), p. 910.

[14] H. Guo and M. Li, Global dynamics of a staged progression model for infectious diseases,

Math. Biosci. Eng., 3 (2006), 513–525.
[15] H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics

in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413–2430.
[16] H. Guo, M. Y. Li and Z. Shuai, Global dynamics of a general class of multistage models for

infectious diseases, SIAM Journal on applied mathematics, 72 (2012), 261–279.

[17] J. M. Hyman, J. Li and E. Stanley, The differential infectivity and staged progression models

for the transmission of HIV., Math. Biosci., 155 (1999), 77–109.
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