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Abstract We develop a multi-group epidemic framework via virtual dispersal where
the risk of infection is a function of the residence time and local environmental risk.
This novel approach eliminates the need to define and measure contact rates that are
used in the traditional multi-group epidemic models with heterogeneous mixing. We
apply this approach to a general n-patch SIS model whose basic reproduction number
R0 is computed as a function of a patch residence-time matrix P. Our analysis implies
that the resulting n-patch SIS model has robust dynamics when patches are strongly
connected: There is a unique globally stable endemic equilibrium when R0 > 1,
while the disease-free equilibrium is globally stable when R0 ≤ 1. Our further analy-
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sis indicates that the dispersal behavior described by the residence-time matrix P has
profound effects on the disease dynamics at the single patch level with consequences
that proper dispersal behavior along with the local environmental risk can either pro-
mote or eliminate the endemic in particular patches. Our work highlights the impact
of residence-time matrix if the patches are not strongly connected. Our framework can
be generalized in other endemic and disease outbreak models. As an illustration, we
apply our framework to a two-patch SIR single-outbreak epidemic model where the
process of disease invasion is connected to the final epidemic size relationship.We also
explore the impact of disease-prevalence-driven decision using a phenomenological
modeling approach in order to contrast the role of constant versus state-dependent P
on disease dynamics.

Keywords Epidemiology · SIS–SIR models · Dispersal · Residence times · Global
stability · Adaptive behavior · Final size relationship

Mathematics Subject Classfication Primary 34D23 · 92D25 · 60K35

1 Introduction

Sir Ronald Ross must be considered the founder of mathematical epidemiology (Ross
1911) despite the fact that Daniel Bernoulli (1700–1782) was most likely the first
researcher to introduce the use of mathematical models in the study of epidemic out-
breaks (Bernoulli 1766; Dietz and Heesterbeek 2002) nearly 150years earlier. Ross
appendix to his 1911 paper (Ross 1911) not only introduces a nonlinear system of dif-
ferential equations aimed at capturing the overall dynamics of the malaria contagion,
a disease driven by the interactions of hosts, vectors and the life history of Plasmod-
ium falciparum, but also includes a tribute to mathematics through his observation
that this framework may also be used to model the dynamics of sexually transmit-
ted diseases (Ross 1911). Ross observation has motivated the use of mathematics
in the study of the impact of human social interaction on disease dynamics (Blythe
and Castillo-Chavez 1989; Castillo-Chavez and Busenberg 1991; Castillo-Chavez and
Huang 1999; Castillo-Chavez et al. 1996, 1999; Hadeler and Castillo-Chavez 1995;
Hethcote and Yorke 1984; Hsu Schmitz 2000a, b, 2007; Yorke et al. 1978). In par-
ticular, Ross work introduced the type of framework needed to capture and modify
the dynamics of epidemic outbreaks: new landscapes where public policies could be
tried and tested without harming anybody, complementing and expanding the role
that statistics plays in epidemiology. Suddenly scientists and public health experts
had a “laboratory” for assessing the impact of transmission mechanisms, evaluating,
a priori, efforts aimed at mitigating or eliminating the deleterious impact of disease
dynamics.

The study of the dynamics of communicable disease in metapopulation, multi-
group or age-structure models has also benefitted from the work of Ross. Contact
matrices have been used in the study of disease dynamics to accommodate or cap-
ture the dynamics of heterogeneous mixing populations (Anderson and May 1982;
Castillo-Chavez et al. 1989; Dietz and Schenzle 1985; Hethcote 2000). The spread
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of communicable diseases like measles, chicken pox or rubella is intimately con-
nected to the concept of contact, “effective” contact or “effective” per capita contact
rate (Castillo-Chavez et al. 1994; Hethcote 2000), a clear measurable concept in, for
example, the context of sexually transmitted diseases (STDs) or vector-borne diseases.
The values used to define a contact matrix emerge from the a priori belief that con-
tacts can be clearly defined and measured in any context. Their use in the context
of communicable diseases is based often on relative rankings, the result of observa-
tional subjective measures of contact or activity levels. For example, since children are
believed to have the most contacts per unit of time, their observed activity levels are
routinely used to set a relative contact or activity scale. Traditionally, since school chil-
dren are assumed to be the most active, they are used to set the scale with the rest of the
age-specific contact matrix usually completed under the assumption of proportionate
(weighted random) mixing (albeit other forms of mixing are possible Anderson and
May 1991; Blythe and Castillo-Chavez 1989; Castillo-Chavez and Busenberg 1991;
Castillo-Chavez et al. 1989; Dietz and Schenzle 1985; Hethcote 2000 and references
therein). In short, mixing or contact matrices are used to collect rescaled estimated
levels of activity among interacting subgroups or age-classes, a phenomenological
estimation process based on observational studies and surveys (Mossong et al. 2008).
Our belief that contact rates cannot, in general, be measured in satisfactory ways for
diseases like influenza, measles or tuberculosis arises from the difficulty of assessing
the average number of contacts per unit of time of children in a school bus or the
average number of contacts per unit of time that children and adults have with each
other in a classroom or at the library, per unit of time. The issue is further confounded
by our inability to assess what an effective contact is: a definition that may have to be
tied in to the density of floating virus particles, air circulation patterns, or whether or
not contaminated surfaces are touched by susceptible individuals. In short, defining
and measuring a contact or an effective contact turn out to be incredibly challenging
(Mossong et al. 2008). That said, experimental methods may be used to estimate the
average risk of acquiring, for example, tuberculosis (TB) or influenza, to individuals
that spend on the average three hours per day in public transportation, in Mexico City
or New York City.

In this paper, we propose the use of residence times in heterogeneous environments,
as a proxy for “effective” contacts per unit time. Catching a communicable disease
would of course depend on the presence of infected/infectious individuals (a necessary
condition), the level of “risk” within a given “patch” (crowded bars, airports, schools,
work places, etc.) and the time spent in such environment. Risk of infection is assumed
to be a function of the time spent in pre-specified environments: risk that may be
experimentally measured. We argue that characterizing a landscape as a collection
of patches defined by risk (public transportation, schools, malls, work place, homes,
etc.) is possible, especially if the risk of infection in such “local” environments is in
addition a function of residence times and disease levels. Ranking patch-dependent
risks of infection via the values of the transmission rate (β) per unit of time may
therefore be possible and useful. The reinterpretation of β and the use of residence
times move us away from the world of models that account for transmission via
the use of differential susceptibility to the world where infection depends on local
environmental risk.
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Consequently, we introduce a residence-time framework in the context of a multi-
group system defined by patch-dependent risk (defined by β). We study the role
of patch residence times on disease dynamics within endemic and single-outbreak
multi-group scenarios. Specifically, the study of the impact of patch residence times
(modeled by amatrix of constants) on disease dynamics within a Susceptible-Infected-
Susceptible (SIS) framework is carried out first, under the philosophy found in Brauer
(2008), Brauer and Castillo-Chavez (1994), Brauer et al. (1996), Brauer and van
den Driessche (2001), Brauer and Watmough (2009), Castillo-Chavez and Huang
(1999), Hadeler and Castillo-Chavez (1995) and Huang et al. (1992). Individuals
move across patches as a function of their assessment of relative levels of infection
in each area [studies using alternative classical approaches are found in Brauer and
van den Driessche (2001), Brauer et al. (2008), Heiderich et al. (2002) and Velasco-
Hernández et al. (1996)]. The concept of modeling disease dynamics where the
population is structured into several communities goes back to Rushton and Maut-
ner (1955). They considered an SI model with a constant population size in each
community and derived solutions for their model. Multi-group models have surged in
the literature to model sexually transmitted diseases. Lajmanovich and Yorke (1976)
proposed an SIS model in the study of gonorrhea in a heterogeneous population. They
obtained conditions to prove the global stability of both the disease-free equilibrium
and the endemic equilibrium (EE). Nold (1980) proposed some extensions, allow-
ing a more general contact form, of the model in Lajmanovich and Yorke (1976).
Other multi-group models with different settings (including differential infectivity
in each group) have been considered in Fall et al. (2007), Hethcote and Thieme
(1985), Huang et al. (1992), Jacquez and Simon (1993), Jacquez et al. (1988, 1991),
Lin and So (1993), Sattenspiel and Simon (1988) and Simon and Jacquez (1992).
Hethcote and Thieme (1985) proved the uniqueness and the local stability of the
EE if R0 > 1 for an SI RS multi-group model. Lin and So (1993) proved the
global stability of the EE if the effective contact rates between groups are small.
Recently, authors in Fall et al. (2007) and Shuai and Driessche (2013) revisited the
Lajmanovich and Yorke’s model (Lajmanovich and Yorke 1976). Guo et al. (2006,
2008) used a combination of Lyapunov functions and elements of graph theory to
prove the global stability of the EE of an SIR and SEIR multi-group models. Shuai
and Driessche (2013) used a similar approach to study the asymptotic behavior of
equilibria for some epidemic multi-group models. Typically, a sharp threshold prop-
erty (Shuai and Driessche 2013), for which the disease dies out if R0 ≤ 1 and persists
if R0 > 1, holds if the transmission (and contact) matrix B = (βi j )1≤i, j≤n is irre-
ducible.

In this paper, we explore the disease dynamics when the residence-time matrix P

could be irreducible or not. First, we prove that the irreducibility of the residence-
time matrix P leads to a sharp threshold property. This property also holds when P

is replaced by the irreducible matrix PDP
t where D is a particular diagonal matrix

and the residence-time matrix P could be rectangular. Then, we study the disease
dynamics at patch level by relaxing the irreducible condition on the residence-time
matrixP. Generalizations are explored through simulations of the two-patch SISmodel
with state-dependent residence times within our framework. The results are compared
to the disease dynamics generated by constant residence times. More specifically,
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the paper is organized as follows: Sect. 2 introduces a general n patch SIS model
that accounts for residence times. Theoretical results on the role of residence times
matrix (P) on disease dynamics are carried out using the residence-time-dependent
basic reproduction number R0(P). The patch-specific reproduction numbers Ri

0(P),
i = 1, . . . , n are defined to determine the disease persistence at the patch level. The
usage of R0(P) allows us to explore the cases when the network configuration of
patches is non-strongly connected. In addition, we also apply our framework to a SI
model and a SIS model without demographics. Section 3 explores, through simula-
tions, the dynamics of the SIS model under a state-dependent residence-time matrix
in a two-patch system; P ≡ P(I1, I2). That is, when the decisions to spend time in
a patch are a function of patch-disease prevalence. Section 4 highlights our frame-
work in the case of a two-patch single-outbreak SIR model following the work of
Brauer (2008) and Brauer and Watmough (2009) and discusses the role of P on the
final epidemic size. Section 5 collects our observations, conclusions and discusses
future work. The detailed proofs of our theoretical results are provided in the Appen-
dix.

2 A General n-Patch SIS Model with Residence Times

A general n-patch SIS model with residence-time matrix P is derived. The global
analysis of the model is carried out via the basic reproduction number R0. We also
include patch-dependent disease persistence conditions.

2.1 Model Derivation

Wemodel disease dynamicswithin an environment defined by n patches (or risk areas),
and so, we let Ni (t), i = 1, 2 . . . , n denote resident population at Patch i at time t . We
assume that Patch i residents spend pi j ∈ [0, 1] time in Patch j , with

∑ j=n
j=1 pi j = 1,

for each i = 1, . . . , n. In extreme cases, for example, we may have, for pi j = 0,
i �= j , that is Patch i residents spend no time in Patch j while

∑
j �=i pi j = 1 (or

equivalently pii = 0) would imply that Patch i residents spend all their time in Patch
j (with j = 1, . . . , n and j �= i) even though their patch is (labeled) i . In the absence
of disease dynamics, the population of Patch i residents is modeled by the following
equation:

dNi

dt
= bi − di Ni (1)

where the parameters bi and di represent the birth rate and the natural per capita death
rate in Patch i , respectively. Hence, the Patch i resident population approaches the
constant bi

di
as t → ∞.

In the presence of disease, we assume that disease dynamics are captured by an SIS
model; thus, the Patch i resident population is divided into susceptible and infected
classes, represented by Si , Ii , respectively, with Si + Ii = Ni . We further assume
that (a) there is no additional death due to disease; (b) the Patch i infected resident
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population recovers and goes back to the susceptible class at the per capita rate γi ; (c)
the residence-time matrix P = (pi j )

j=1,...,n
i=1,...,n collects the proportion of times spent by

i-residents in j-environments, i = 1, . . . , n and j = 1, . . . , n. The disease dynamics
are therefore described by the following equations:

Ṡi = bi − di Si + γi Ii −
n∑

j=1

(Si infected in Patch j)

İi =
n∑

j=1

(Si infected in Patch j) − γi Ii − di Ii

Ṅi = bi − di Ni . (2)

We model Si infection within Patch j in the following way:

• Since each pi j entry of P denotes the proportion of time that Patch i residents
spent mingling in Patch j , we have that:
– There are Ni pi j = Si pi j + Ii pi j Patch i residents in Patch j on the average
at time t .

– The total Patch j , the total effective population is
∑n

k=1 Nk pkj , of which∑n
k=1 Ik pk j are infected. Hence, the proportion of infected individuals in Patch

j is
∑n

k=1 Ik pk j∑n
k=1 Nk pk j

and well defined, as long as there exists a k such that pkj > 0,

so that the population in Patch j is nonzero.
• Hence, the [Si infected per unit of time in Patch j] can be represented as the
product of the following three items:

β j
︸︷︷︸

the risk of infection in Patch j

× Si pi j
︸ ︷︷ ︸

Susceptible from Patch iwho are currently in Patch j

×
∑n

k=1 Ik pk j∑n
k=1 Nk pkj

︸ ︷︷ ︸
Proportion of infected in Patch j

.

The transmission takes on a modified frequency-dependent form that depends on
howmuch time individuals of each epidemiological class spend in a particular area,
where β j differs by patch to reflect spatial differences in potential infectivity.More
precisely, β j is assumed to be a patch-specific measure of disease risk per unit of
time with its effectiveness tied in to local environmental and sanitary conditions.
Therefore,

[Si infected per unit of time in Patch j] ≡ β j × Si pi j ×
∑n

k=1 Ik pk j∑n
k=1 Nk pkj

(3)

provided that there exists k such that pkj > 0.
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Model (2) can be rewritten as follows:

Ṡi = bi − di Si + γi Ii −
n∑

j=1

(

β j × Si pi j ×
∑n

k=1 Ik pk j∑n
k=1 Nk pkj

)

,

İi =
n∑

j=1

(

β j × Si pi j ×
∑n

k=1 Ik pk j∑n
k=1 Nk pkj

)

− γi Ii − di Ii ,

Ṅi = bi − di Ni , (4)

with the dynamics of the Patch i resident total population modeled by the equation:

Ṅi (t) = bi−di Ni (t), where Si+Ii = Ni , which implies that Ni (t) → bi
di

as t → +∞.

Theory of asymptotically autonomous systems for triangular systems (Castillo-Chavez
and Thieme 1995; Vidyasagar 1980) guaranties that System (4) is asymptotically
equivalent to:

İi =
n∑

j=1

(

β j

(
bi
di

− Ii

)

pi j

∑n
k=1 Ik pk j

∑n
k=1

bk
dk
pk j

)

− (γi + di )Ii

= Ii

(
bi
di

− Ii

)
⎛

⎝
n∑

j=1

β j p2i j
∑n

k=1
bk
dk
pk j

⎞

⎠

+
(
bi
di

− Ii

) n∑

j=1

β j pi j
∑n

k=1,k �=i Ik pk j
∑n

k=1
bk
dk
pk j

− (di + γi )Ii (5)

for i = 1, 2, . . . , n, with residence-time matrix P = (
pi j
) j=1,...,n
i=1,...,n satisfying the

conditions:
HP1 At least one entry in each column of P is strictly positive; and
HP2 The sum of all entries in each row is one; i.e.,

∑n
j=1 pi j = 1 for all i .

Remarks on Model (5):

1. Timescales: We assume that the disease dynamics occurs at the comparable
timescale as to the demographic dynamics and individuals enter or leave the patches
at the relative faster timescale, e.g., daily or even hourly. The case when there is
no demographics in the context of a single epidemic outbreak scenario, has been
considered in Sect. 4.

2. In our current modeling framework, we assume that the residence-time matrix P is
a n×n matrix. This approach could generalize the concept of k social groups and l
patches by letting n = max{k, l}, pi j |i>k = 0 and pi j | j>l = 0. The consequence
of this generalization is that P could have zero rows (when k < l = n) or columns
(when l < k = n). The alternative treatment has been provided in the subsection
2.3 (thanks to the referee).

3. We do not assume that the residence-time matrix P being irreducible, instead, we
assume that it satisfies relaxed conditions HP1–HP2. More specifically, we will
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explore the following two cases: (1) the global dynamics of Model (5) when the
residence-time matrix P is irreducible; (2) the persistence of disease dynamics
at the patch level under conditions of HP1 and HP2 in the following subsection
which includes the scenario when P is not irreducible.

2.2 Equilibria, the Basic Reproduction Number and Global Analysis

To analyze the system,we investigate the basic reproduction number of the systemwith
fixed residence times to better understand its properties in the absence of behavioral
responses to risk. We let B = (β1, β2, . . . , βn)

t define the risk of infection vector; βi
is a measure of the risk per susceptible per unit of time while in residence in Patch i .

Letting S = (S1, S2, . . . , Sn)
t , I = (I1, I2, . . . , In)

t , N̄ =
(
b1
d1

,
b2
d2

, . . . ,
bn
dn

)t

,

and Ñ = P
t N̄ =

⎛

⎜
⎜
⎜
⎜
⎝

∑n
k=1

bk
dk
pk1

∑n
k=1

bk
dk
pk2

...
∑n

k=1
bk
dk
pkn

⎞

⎟
⎟
⎟
⎟
⎠

.Then, System (5) can be rewritten in the following

compact (vectorial) form:

İ = diag(N̄ − I )Pdiag(B)diag(Ñ )−1
P
t I − diag(dI + γI )I (6)

with state space in R
n+. The set � = {I ≥ 0Rn , I ≤ N̄ } is a compact positively

invariant that attracts all trajectories of System (6). This implies that the populations
involved are “biologically” well defined since solutions of (6) will converge to and
stay in �. We therefore restrict the dynamics of (6) to the compact set �.

The analysis of System (6) is naturally tied in to the basic reproductive number
R0 (Diekmann et al. 1990; Driessche and Watmough 2002); the average number of
secondary cases produced by an infected individual during its infectious period while
interacting with a purely susceptible population. R0 is given by (see the detailed
formulation in Appendix):

R0 = ρ(−diag(N̄ )Pdiag(B)diag(Ñ )−1
P
t V−1) (7)

where V = −diag(dI + γI ), dI = (d1, d2, . . . , dn)
t and γI = (γ1, γ2, . . . , γn)

t .
The basic reproduction number R0 is used to establish global properties of System

(6). For the relevant literature on global stability for multi-group or metapopulation
models, see Arino and Driessche (2003), Iggidr et al. (2012), Kuniya and Muroya
(2014), Lajmanovich and Yorke (1976), Sattenspiel and Simon (1988) and the refer-
ences therein.We define the disease-free equilibrium (DFE) of System (6) as I ∗ = 0Rn

and the endemic equilibrium (when R0 > 1) as Ī where all components are positive.
By using the same approach as in Iggidr et al. (2012) and Lajmanovich and Yorke
(1976), we arrive at the following theorem regarding the global dynamics of Model
(6).
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Theorem 2.1 (Global dynamics ofModel (6)) Suppose that the residence-timematrix
P is irreducible, then the following statements hold:

• If R0 ≤ 1, the DFE I ∗ = 0Rn is globally asymptotically stable. If R0 > 1 the DFE
is unstable.

• If R0 > 1, there exists a unique endemic equilibrium Ī which is GAS.

Remarks The detailed proof of Theorem2.1 is provided in “Appendix 2.”These results
imply that System (6) is robust; that is, disease outcomes are completely determined
by whether or not the reproduction number R0 is greater or less than one. The results
of Theorem 2.1 while powerful do not provide easily accessible insights on the impact
of the residence matrix P on the levels of infection within each patch.

Direct insights on the effects ofP are derived by focusing on the levels of endemicity
within each patch. The following two definitions help set the stage for the discussion:

• The basic reproduction number for Patch i in the absence of movement (pii = 1 or∑
i �= j pi j = 0), SIS model, is defined as Ri

0 ≡ βi
di+γi

, which determines whether

or not the disease will be endemic in Patch i . In short disease will die out ifRi
0 ≤ 1

with a unique endemic equilibrium, that is GAS, if Ri
0 > 1.

• The basic reproduction number associated with Patch i , under the presence of
multi-patch residents, is defined as follows:

Ri
0(P) =

∑n
j=1 β j

(
bi
di
pi j
)
(

pi j
∑n

k=1
bk
dk

pk j

)

di + γi
=

∑n
j=1 pi jβ j

( (
bi
di

pi j
)

∑n
k=1

bk
dk

pk j

)

di + γi

= Ri
0 ×

n∑

j=1

pi j

(
β j

βi

)
⎛

⎝

(
bi
di
pi j
)

∑n
k=1

bk
dk
pk j

⎞

⎠ .

We explore the role that Ri
0(P) plays in determining the impact of all residents on

disease dynamics persistence in Patch i in the following theorem.

Theorem 2.2 (The endemicity of disease in Patch i) Assume that the residence-time
matrix P satisfies Condition HP1 and HP2 but that some of its entries can be zeros.

• If Ri
0(P) > 1, then the disease persists in Patch i .

• If the following conditions hold:

H:pkj = 0 for all k = 1, . . . , n, and k �= i, whenever pi j > 0,

then we have

Ri
0(P) = Ri

0 ×
n∑

j=1

pi j

(
β j

βi

)
⎛

⎝

(
pi j

bi
di

)

∑n
k=1

bk
dk
pk j

⎞

⎠ = Ri
0 ×

n∑

j=1

pi j

(
β j

βi

)

.
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Thus, when ConditionH holds and Ri
0 ×∑n

j=1 pi j
(

β j
βi

)
< 1, then endemic levels

of disease cannot be supported in Patch i . That is,

lim
t→∞ Ii (t) = 0.

Remarks The detailed proof of Theorem 2.2 is provided in “Appendix 3.” The results
of Theorem 2.2 give insights on the role that the infection risk (measured by B) and
the residence-time matrix (P) have in promoting or suppressing infection. Further,
a closer look at the expression of the general basic reproduction number in Patch i ,
namely

Ri
0(P) = Ri

0 ×
n∑

j=1

pi j

(
β j

βi

)
⎛

⎝

(
bi
di
pi j
)

∑n
k=1

bk
dk
pk j

⎞

⎠ ,

leads to the following observations:

1. The movement between patches, modeled via residence-time matrix P, can pro-
mote endemicity: For example, ifRi

0 = βi
di+γi

≤ 1, i.e., there is no endemic disease
in Patch i , then the presence of movement connecting Patch i to possibly all other
patches can support endemic disease levels in the following ways:
• Via the presence of high-risk patches, that is, there exists a patch j such that

β j
βi

is large enough. For example, letting pkl = 1/n for all k, l with the total

population in each patch being the same ( bkdk = K for all k; K a constant) then

Ri
0(P) = Ri

0

∑n
j=1 β j

nβi
, and consequently, if

∑n
j=1 β j >

nβi
Ri

0
, then Patch i will

promote the disease at endemic levels.
• Whenever individuals spend more time in high-risk patches than in low-risk
patches. For example, in the extreme case, pi j = 1with

β j
βi

> 1
Ri

0
, we have that

Ri
0(P) > 1, and thus, endemic disease levels in Patch i can be supported. Patch

j ( j = 1, . . . , n and j �= i) can therefore be considered the source and Patch
i (i �= j) the sink (Arino 2008; Arino et al. 2005; Arino and Driessche 2003,
2006; Kuniya and Muroya 2014; Lajmanovich and Yorke 1976; Sattenspiel
and Simon 1988; Sattenspiel and Dietz 1995).

2. Under the assumption Ri
0 > 1, for an isolated Patch i , conditions that lead to

disease extinction in the same Patch i under the movement can be identified.
According to Theorem 2.2, Condition H should be satisfied and so the expression
of Ri

0(P) reduces to

Ri
0(P) = Ri

0 ×
n∑

j=1

pi j

(
β j

βi

)
⎛

⎝

(
bi
di
pi j
)

∑n
k=1

bk
dk
pk j

⎞

⎠ = Ri
0 ×

n∑

j=1

pi j

(
β j

βi

)

.
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Therefore, the only way to have the value of Ri
0(P) be less than one, would be

when the amount of time spent in Patch i is such that
∑n

j=1

(
β j
βi

)
pi j < 1

Ri
0(P)

.

Therefore, we conclude that the synergy between the residence-time matrix P and
the existence of sufficient low-risk patches (i.e., β j 
 βi ) can suppress a disease
outbreak in Patch i .

2.3 Social Groups Versus Patch Environments

Weassume that there are n social groups interacting inm different patch environments.
Let pi j be the proportion time of social group i spent at patch environment j , then the
residence-time matrix P = (pi j ) 1≤i≤n

1≤ j≤m
is a n × m matrix.

Following the same modeling approach of the system (5), Model 5 is rewritten as
the following form:

İi =
(
bk
dk

− Ii

) m∑

j=1

β j pi j

n∑

k=1

Ik pk j

n∑

l=1

bl
dl

pl j

− (di + γi )Ii

=
(
bk
dk

− Ii

) n∑

k=1

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m∑

j=1

pi jβ j pk j

n∑

l=1

bl
dl

pl j

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Ik − (di + γi )Ii

=
(
bk
dk

− Ii

) n∑

k=1

bik Ik − (di + γi )Ii (8)

where

bik =
m∑

j=1

⎛

⎜
⎜
⎜
⎜
⎝

pi jβ j pk j
n∑

l=1

bl
dl

pl j

⎞

⎟
⎟
⎟
⎟
⎠

.

Model (8) is isomorphic to those considered in Fall et al. (2007), Guo et al.
(2006), Guo et al. (2008) and Shuai and Driessche (2013), which could be rewrit-
ten in the simplified form (6) as Model (5). Denote the disease transmission matrix
B = (bik)1≤i,k≤n , then we also have the form of B = Pdiag(B)diag(Ñ )−1

P
t which

is symmetric. We could see that Theorem 2.1 still holds if the irreducibility of P is
replaced by the irreducibility of B. We should also expect similar results of Theorem
2.2 for Model (8) when B is not irreducible.
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The difference between the models in the aforementioned papers (e.g., Fall et al.
2007; Guo et al. 2006, 2008; Shuai and Driessche 2013) and our model (8) is that: In
the former models, the disease transmission coefficient βi j involves the contact rate
between group j and group i ; see the case of bilinear incidence (Guo et al. 2006,
2008; Shuai and Driessche 2013) and proportional of βi j for the frequency-dependent
incidence (Fall et al. 2007;Guo et al. 2006). In our case, the disease transmissionmatrix
B = (bik)1≤i,k≤n is symmetric and incorporates the environmental risks in different
patches and the proportion of times that different social groups spent in each patch.

Now we apply the approach above to a SIS model without demographics and a SI
model with the disease-induced death rate ci for each social group i as follows.

1. A SIS model without demographics (i.e., assume that the total population size Ni

at each patch i is constant and the natural death rate di = 0) could be rewritten in
the form of:

İi = Si

n∑

k=1

bik Ik − γi Ii , Si = Ni − Ii (9)

whose simplified form is

İ = SBI − GI

where B = (bik)1≤i,k≤n =

⎛

⎜
⎜
⎜
⎜
⎝

∑m
j=1

⎛

⎜
⎜
⎜
⎜
⎝

pi jβ j pk j
n∑

l=1

Nl pl j

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

1≤i,k≤n

is symmetric, and

G = (γiδik)1≤i,k≤n with δik being the Kronecker delta. The basic reproduction
number of Model (9) is ρ(BG−1) which determines whether the disease persists
or dies out. Both our Theorems 2.1 and 2.2 could be applied to Model (9)

2. A SI model with the disease-induced death rate ci for each social group i could be
rewritten in the form of:

İi = Si

n∑

k=1

bik Ik − ci Ii , Si = Ni − Ii (10)

whose simplified form is

İ = SBI − CI

whereC=(ciδik)1≤i,k≤n , and B=(bik)1≤i,k≤n =

⎛

⎜
⎜
⎜
⎜
⎝

∑m
j=1

⎛

⎜
⎜
⎜
⎜
⎝

pi jβ j pk j
n∑

l=1

Nl pl j

⎞

⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎠

1≤i,k≤n
is still symmetric but depending on the total population size Nl in each patch.
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Notice that Ṅl = −cl Il , we expect the total population at each patch approaches
zero as time is large enough. This is confirmed by simulations. Simulations also
suggest that the infection dynamics have similar patterns as the prevalence of the
SIR model studied in Sect. 4, and the limit of Ii (t)/Ni (t) goes to 1 for each patch
as time is large enough.

3 Two-Patch Models: State-Dependent Residence-Time Matrix

We now extend the analysis of disease dynamics to the case where susceptible indi-
viduals respond to variations in risk in an automatic way. In particular, we consider
the case when susceptible individuals make programmed responses to variations in
disease risk, and do not choose their response to optimize an index of well-being (see,
e.g., Brauer 2008; Brauer et al. 1996; Brauer and van den Driessche 2001; Brauer and
Watmough 2009). While this may not be a very good approximation of disease risk
management in real systems, it enables us to explore the implications of certain types
of phenomenologically modeled behavioral responses by assuming, for example, that
the proportion of time spent in a particular patch depends on the numbers of infected
individuals on that particular patch; that is P ≡ P(I1, I2).

Possible properties of the proportion of time spent by resident of Patch i into
Patch j , i �= j , (pi j ) may include: increases with respect to the growth of infected
resident in Patch i (Ii ) or decreases with respect to infected resident in Patch j (I j ).
Mathematically, we would have that

∂pi j (Ii , I j )

∂ I j
≤ 0 and

∂pi j (Ii , I j )

∂ Ii
≥ 0.

In a two-patch system, the use of the relationship pi j (I1, I2) + p ji (I1, I2) = 1
reduces the above four conditions on P to the following conditions:

∂p11(I1, I2)

∂ I1
≤ 0 and

∂p22(I1, I2)

∂ I2
≤ 0.

Examples of functions pi j (I1, I2) with these properties include,

p12(I1, I2) = σ12
1 + I1

1 + I1 + I2
and p21(I1, I2) = σ21

1 + I2
1 + I1 + I2

and

p11(I1, I2) = σ11 + σ11 I1 + I2
1 + I1 + I2

and p22(I1, I2) = σ22 + I1 + σ22 I2
1 + I1 + I2

where σi j are such that
2∑

j=1

σi j = 1.
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More complex behavioral response formulations may also depend on the states of
total populations N1 and N2, but the current specification captures important compo-
nents of risk (infections) and allows us to retain the asymptotic equivalence property
applied in the case of fixed residence times. Hence, using the same notation as in
System (6) leads to the following two-dimensional system with P = P(I1, I2):

⎧
⎨

⎩

İ1 = X (I1, I2)
(
b1
d1

− I1
)
I1 + Y (I1, I2)

(
b1
d1

− I1
)
I2 − (d1 + γ1)I1,

İ2 = Y (I1, I2)
(
b2
d2

− I2
)
I1 + Z(I1, I2)

(
b2
d2

− I2
)
I2 − (d2 + γ2)I2,

(11)

where

X (I1, I2) = β1 p211(I1, I2)

p11(I1, I2)
b1
d1

+ p21(I1, I2)
b2
d2

+ β2 p212(I1, I2)

p12(I1, I2)
b1
d1

+ p22(I1, I2)
b2
d2

,

Y (I1, I2) = β1 p11(I1, I2)p21(I1, I2)

p11(I1, I2)
b1
d1

+ p21(I1, I2)
b2
d2

+ β2 p12(I1, I2)p22(I1, I2)

p12(I1, I2)
b1
d1

+ p22(I1, I2)
b2
d2

,

and

Z(I1, I2) = β1 p221(I1, I2)

p11(I1, I2)
b1
d1

+ p21(I1, I2)
b2
d2

+ β2 p222(I1, I2)

p12(I1, I2)
b1
d1

+ p22(I1, I2)
b2
d2

,

where X (I1, I2), Y (I1, I2) and Z(I1, I2) are positive functions of I1 and I2.
The basic reproduction number R0 is the same as in the previous section since it is

computed at the infection-free state, i.e.,

R0 = ρ(diag(N̄ )Pdiag(B)diag(Ñ )−1
P
t (−V−1))

where, in this case, we have that P =
[
σ11 σ12
σ21 σ22

]

and σi j = pi j (0, 0), ∀{i, j} =
{1, 2}.

The properties of positiveness and boundedness of trajectories of System (6) are pre-
served in System (11). In addition, System (11) has a unique DFE equilibrium whose
local stability is determined by the value of theR0: The DFE is locally asymptotically
stable if R0 < 1 while it is unstable if R0 > 1.

Let us considerwhether System (11) canhave a boundary equilibriumsuch as (0, Ī2)
or ( Ī1, 0). The assumption that System (11) has such a boundary equilibrium (0, Ī2)
with Ī2 > 0 implies that Y (0, Ī2) = 0. Since p11(0, I2) = σ11+I2

1+I2
and p22(0, I2) =

σ22, we deduce that

Y (0, I2) = β1σ21(σ11 + I2)
σ11+I2
1+I2

b1
d1

+ σ21
b2
d2

(1 + I2)
+ β2σ12σ22

σ12
b1
d1

+ σ22
b2
d2

(1 + I2)
.
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This indicates that Y (0, I2) = 0 if and only if σ21 = 0 and σ12 = 0, which requires
that:

p12 = p21 = 0, and p11 = p22 = 1.

A similar arguments can be applied to the boundary equilibrium ( Ī1, 0). Therefore, we
conclude that System (11) will have a boundary equilibrium

(
(0, Ī2) or ( Ī1, 0)

)
only

in the trivial case of isolated patches, that is, where there is no movement between two
patches. This conclusion differs from the state-independent residence matrix model
(6), since for example, the two-patch model (6), according to Theorem 2.1, boundary
equilibrium (0, Ī2) or ( Ī1, 0) can exist when p11 = p22 = 0 (p12 = p21 = 1).

To illustrate the difference between the state-dependent residence matrix model
(11) and the state-independent residence matrix model (6), we look at the situation
when σ11 = σ22 = 0, σ12 = σ21 = 1 ( p11 = p22 = 0, p12 = p21 = 0 for the
state-independent residence matrix model (6)). Under the condition of σ11 = σ22 =
0, σ12 = σ21 = 1, we have Model (11), that

p12(I1, I2) = 1 + I1
1 + I1 + I2

and p21(I1, I2) = 1 + I2
1 + I1 + I2

and

p11(I1, I2) = I2
1 + I1 + I2

and p22(I1, I2) = I1
1 + I1 + I2

.

This difference has significant impact on disease dynamics (see Fig. 1a, b, red curves).
In Fig. 1b, we see that the infection in Patch 2 (high risk) persists in the state-

dependent case, whereas it dies out when P is constant. That is due to the fact that
pii (I1, I2) will not equal zero, whereas pi j (I1, I2) with i �= j may. For the constant
residence-time matrix, the dynamics of the disease in each patch is also independent,
where people in Patch i infect only susceptible in Patch j with i �= j . In Fig. 1b (red
solid curve),we observe that the disease dies out in Patch 2with R̃2

0 = β1
d2+γ2

= 0.8571.
For the state-dependent case, unless there is no disease in both patches or one disease-
free patch, the proportion of time residents spend in their own patch is nonzero. This
leads the disease to persist in both patches if R0 > 1 (see Fig. 1b, red dashed curves).
However, even in this case, the disease dies out in both patches if R0 < 1 (see Fig. 3,
red curves, for instance).

3.1 Applications and Comparisons: The Two-Patch Cases

The analytical results of the global dynamics on the asymptotic behavior of Model
(11) are still unresolved. Hence, we ran simulations to gain some insights on the role
of P(I1, I2) on endemic dynamics. We observe that trajectories converge toward an
endemic equilibrium whenever R0 > 1; however, there are substantial differences
in the transient dynamics generated by state-dependent P(I1, I2) when compared to
those generated with a constant residence-time matrix.
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Fig. 2 Coupled dynamics of I1 + I2 for constant pi j (solid) and state-dependent pi j (dashed). The overall
prevalence is higher if the residence times is symmetric (solid and dashed black curves). The black curves
represent the symmetric case (p12 = p21 = σ12 = σ21 = 0.5 ), and the blue lines represent the polar case
(p12 = p21 = σ12 = σ21 = 0) and red curves represent high-mobility case (p12 = p21 = σ12 = σ21 = 1)
(Color figure online)

Unless stated otherwise, we suppose the following generic values for the simu-
lations: β1 = 0.3, β2 = 1.2, b1 = 9, d1 = 1/7, b2 = 9, d2 = 1/10 and
γ1 = γ2 = 1/4. We carried out numerical simulation for a range of residence-time
matrices. It is observed that:

1. For the symmetric case where p12 = p21 = 0.5, the disease is endemic in both
patches as predicted by Theorem 2.1 since R0 = 2.0466. For the state-dependent
case, simulations suggest (Fig. 1a, b, black dashed curves) that trajectories tend
to be endemic in both patches. However, the level of endemicity is lower than the
constant case in Patch 1 (low-risk patch) and is greater in Patch 2 (high-risk patch).

2. Figure 2 sketches the overall prevalence in both patches with three different sce-
narios of residence-time matrix P, both the constant and state-dependent case. The
disease persists since the overall R0 > 1 in all three cases.

3. The case where there is no movement between patches, that is, p12 = p21 =
0 (p11 = p22 = 1) and σ12 = σ21 = 0 (or p12(I1, I2) = p21(I1, I2) = 0),
corresponds to the case where the system behaves as two isolated patches. In this
case, the disease dies out or persists in Patch i if Ri

0 is above or below unity in
both approaches. This is illustrated in Fig. 1a, b) where the disease dies out in
Patch 1 ( Fig. 1a, blue solid line) where R1

0 = β1
d1+γ1

= 0.7636 and the disease

persists in Patch 2 (Fig. 1b, blue solid curve) where R2
0 = β2

d2+γ2
= 3.4286. For

the state-dependent case (dashed blue curves in Fig. 1a, b), the outcome is similar
to the constant residence-time case.

4. In Fig. 4a, b, we explore the cases where there is symmetry (σi j = σ j i ) with
σi j = pi j (0, 0). We supposed in this case that Patch 2 has higher risk (β2 = 1.2)
andPatch 1 has lower risk (β1 = 0.3).As can be intuitively deduced, the prevalence
in Patch 1 is at its highest in the case of “high mobility” (σ12 = σ21 = 1), and
decreasing as σi j decreases (with i �= j). Conversely, prevalence in Patch 2 is
at its highest under very “low mobility” (σ12 = σ21 = 0) and decreases as σi j
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Fig. 3 Dynamics of I1 and I2 for varying σi j for the state-dependent pi j (I1, I2) where R0 < 1. This is
obtained by using the values β1 = 0.2 and β2 = 0.3. In all the three cases, the disease dies out in both
patches. The black curves represent the symmetric case (p12 = p21 = σ12 = σ21 = 0.5 ), the blue line
represent the polar case (p12 = p21 = σ12 = σ21 = 0), and red curves represent high-mobility case
(p12 = p21 = σ12 = σ21 = 1) (Color figure online)

increases. Note that σi j , with i �= j is proportional to pi j (I1, I2) which is the
actual residence time.

5. We continue to explore the asymmetric case (σi j �= σ j i ); that is, there is more
mobility toward one patch. In Fig. 5a, the prevalence in Patch 1 (low risk) is at
its highest if there is “high mobility” from Patch 1 to Patch 2 (σ12 = 1) and no
mobility from Patch 2 to Patch 1 (σ21 = 0), and the prevalence decreases along
with σ12. If the programmed response of residents of Patch 1 is to reduce their
mobility (σ12 = 0) then, even if the mobility of residents in the high-risk Patch 2
is extremely high (σ21 = 1), still the prevalence in Patch 1 is at its lowest. Similar
remarks hold for Fig. 5b regarding the prevalence in Patch 2 (high risk) under
different mobility schemes.

6. Finally, Fig. 6 presents the dynamics of the infected in both patches for the (con-
ventional) case where p12 = 0 (and p11 = 1). This case is particularly interesting
since the residence-time matrix P is not irreducible (hence, the hypothesis of The-
orem 2.1 fails) butR2

0(P) = 1.8929 > 1. As predicted by Theorem 2.2, the disease
in Patch 2 is persistent. Also, it is worth noticing that in Fig. 6, I1 persists as well
even though R1

0(P) = 0.4455 < 1, as the condition Ri
0(P) > 1, for i = 1, 2, is

sufficient but not necessary for persistence in Patch i .

4 Final Epidemic Size

The study of the role of residence-time matrices on the dynamics of a single outbreak
within a Susceptible-Infected-Recovered (with immunity) or SIRmodel without births
and deaths is relevant to the development of public disease management measures
(Brauer et al. 2010; Chowell et al. 2015; Hernandez-Ceron et al. 2013). Under the
parameters and definitions introduced earlier, and making use of the same notation,
we arrive at the following system of nonlinear differential equations:
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Fig. 6 Dynamics of I1 and I2 where p12 = 0. In this case, the residence-time matrix P is not irreducible,
the disease in Patch 2 persists nonetheless as predicted by the Theorem 2.2 (Color figure online)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ṡi = −
(

βi p2i i
Ni pii+N j p ji

+ β j p21i j
Ni pi j+N j p j j

)

Si Ii −
(

βi pii p ji
Ni pii+N j p ji

+ β j pi j p j j
Ni pi j+N j p j j

)
Si I j ,

İi =
(

βi p2i i
Ni pii+N j p ji

+ β j p21i j
Ni pi j+N j p j j

)

Si Ii +
(

βi pii p ji
Ni pii+N j p ji

+ β j pi j p j j
Ni pi j+N j p j j

)
Si I j −αi Ii ,

Ṙi = αi Ii ,
(12)

where Ri denotes the population of recovered immune individuals in Patch i , αi is the
recovery rate in Patch i , and Ni ≡ Si + Ii + Ri , for i = 1, 2.

The basic reproduction number R0 is by definition the largest eigenvalue of 2 × 2
(n × n for the general case) next-generation matrix,

−FV−1=

⎛

⎜
⎜
⎜
⎝

(
β1 p211

N1 p11+N2 p21
+ β2 p212

N1 p12+N2 p22

)
N1
α1

(
β1 p11 p21

N1 p11+N2 p21
+ β2 p12 p22

N1 p12+N2 p22

)
N1
α2

(
β1 p11 p21

N1 p11+N2 p21
+ β2 p12 p22

N1 p12+N2 p22

)
N2
α1

(
β1 p221

N1 p11+N2 p21
+ β2 p222

N1 p12+N2 p22

)
N2
α2

⎞

⎟
⎟
⎟
⎠

.

It has been shown (seeHethcote 1976, for example) that not everybody gets infected
during an outbreak, and so, estimating the size of the recovered population (the final
epidemic size in the absence of deaths or departures) is tied in the solutions of the final
size relationship, given in this case, by the system:

⎡

⎢
⎣

log S1(0)
S1(∞)

log S2(0)
S2(∞)

⎤

⎥
⎦ =

⎡

⎣
K11 K12

K21 K22

⎤

⎦

⎡

⎢
⎣

1 − S1(∞)
N1

1 − S2(∞)
N2

⎤

⎥
⎦ (13)
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where

K =

⎡

⎢
⎢
⎢
⎢
⎣

(
β1 p211

N1 p11+N2 p21
+ β2 p212

N1 p12+N2 p22

)
N1
α1

(
β1 p11 p21

N1 p11+N2 p21
+ β2 p12 p22

N1 p12+N2
p22
)

N2
α2

(
β1 p11 p21

N1 p11+N2 p21
+ β2 p12 p22

N1 p12+N2 p22

)
N1
α1

(
β1 p221

N1 p11+p21N2
+ β2 p222

N1 p12+N2 p22

)
N2
α2

⎤

⎥
⎥
⎥
⎥
⎦

.

The relationship (13) is obtained by using the fact that, in (12), we have Ṡi + İi =
−αi Ii ≤ 0. This implies that limt→∞ Ii (t) = 0 (for i = 1, 2), since Si and Ii are

positive and integrating Ṡi
Si

in (12), we obtain, after some tedious algebra Expression
(13). Brauer (2008) and Brauer and Castillo-Chávez (2012) give more details on the
computation of the final size relationship. We would like to point out that the next-
generation matrix and the matrix K defining the final epidemic size have the same
eigenvalues.

The residence-timematrixPplays an important role as evidencedby the dependence
of the final epidemic size relation as in Fig. 7. Aswe can notice in Fig. 7, the prevalence
in low-risk Patch 1 is highest in the high-mobility scheme,whereas in high-risk Patch 2,
the high mobility leads to the lowest prevalence. Also, as stated before ( lim

t→+∞ Ii (t) =
0, for i = 1, 2) with any typical outbreak model, the disease ultimately dies out from
both patches (Hethcote 2000).

5 Conclusion and Discussion

Heterogeneous mixing in multi-group epidemic models is most often defined in terms
of group-specific susceptibility and average contact rates captured multiplicatively by
the transmission parameter β. However, contact rates, in general, cannot be measured
in satisfactory ways for diseases like influenza, measles or tuberculosis, due to the
difficulty of assessing the average number of contacts per unit of time of susceptible
populations in different locations for varied activities. In this paper, we propose the
use of residence times in heterogeneous environments, as a proxy for “effective”
contacts over a certain time window, and develop a multi-group epidemic framework
via virtual dispersal where the risk of infection is a function of the residence time
and local environmental risk. This novel approach eliminates the need to define and
measure contact rates that are used in the traditional multi-group epidemic models
with heterogeneous mixing.

Under the proposed framework, we formulate a general multi-patch SIS epidemic
model with residence times. We calculate the basic reproduction number R0 which
is a function of a patch residence-time matrix P. Our global analysis shows that the
model is robust in the sense that the disease dynamics depend exclusively on the basic
reproductive number when the residence-time matrix P is “constant” (Theorem 2.1).
We proved that the disease-free equilibrium is globally asymptotically stable (GAS)
if the basic reproduction number R0 ≤ 1 and that a unique interior endemic GAS
equilibrium exists if R0 > 1. This results holds as long as the residence-time matrix
P is irreducible; that is, the graph of the patches is strongly connected.
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If the residence-time matrix P is not irreducible, that is, the network of the patches
is not strongly connected, Theorem 2.1 does not apply. For these cases, our further
analysis (Theorem 2.2) provides accessible insights on the impact of the residence
matrix P on the infection levels within each patch. Our results imply that the infection
risk (measured by B) and the residence-time matrix (P) can play an important role
in the endemicity at the patch level. More specifically, the right combinations of the
environmental risk level (B) and dispersal behavior (P) can either promote or suppress
infection for particular patches. For example, we are able to apply Theorem 2.2 to the
two-patch case when residents of Patch 1 visit Patch 2 but not conversely. Theorem 2.2
allows us not only to characterize the patch-specific disease dynamics as a function
of the time spend by residents and visitors to the patch of interest, but also to classify
patches as sources or sinks of infection, a role that depends on risk (B) and mobility
(P).

The entries of residence-time matrix P could be prevalence dependent, i.e., not
constant anymore. The disease dynamics are expected to be different than the cases
when P is constant. To explore these differences, we study a two-patch model with the
state-dependent residence-time matrix P, and assume that each entry pi j (I1, I2) of the
residence timesP(I1, I2) is negatively correlated with the prevalence in Patch j .When
the residence times P(I1, I2) is prevalence dependent, our analysis and simulations
suggest that (1) its disease dynamics may be prone to persistent by comparing to the
case when P is constant (e.g., Figs. 1, 2); and (2) the disease endemic level could be
rather complicated (e.g., Figs. 3, 4, 5, 6).

We have extended our framework to a two-patch SIR single-outbreak model to
explore how the residence-time matrix P may affect the final endemic size. We first
derived the final epidemic size relationship in order to capture the size of the outbreak.
Our analysis and simulations support that the residence-time matrix P plays an impor-
tant role in the final epidemic size. For example, as observed in Fig. 7, the prevalence
in low-risk Patch 1 is highest in the high-mobility scheme, whereas in high-risk Patch
2, the high mobility leads to the lowest prevalence.

In both conventional and phenomenological approaches to residence times used in
this paper, humans behavior and responses to disease risk are automatic: P is constant
and predefined functions of health status. Recent studies (Fenichel et al. 2011; Horan
and Fenichel 2007; Horan et al. 2011, 2010; Perrings et al. 2014) have incorporated
behavior as a feedback response coupled with the dynamics of the disease. Amodel of
the decision to spend time in patch i = 1, 2 based on individuals’ utility functions that
include the possibility of adapting to changing contagion dynamics in the above two-
patch setting, using previous work (Fenichel et al. 2011; Morin and Castillo-Chavez
2003), is the subject of a separate study.
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Appendix 1: Computation of R0

Proof The general SIS model with residence time is described by the system (6)

İ = diag(N̄ − I )Pdiag(B)diag(Ñ )−1
P
t I − diag(dI + γI )I.

The right-hand member of the above system can be clearly decomposed as F + V

where

F = diag(N̄ − I )Pdiag(B)diag(Ñ )−1
P
t I and V = −diag(dI + γI )I

The Jacobian matrix at the DFE of F and V is given by:

F=DF

∣
∣
∣
∣
DFE

=diag(N̄ )Pdiag(B)diag(Ñ )−1
P
t and V =V

∣
∣
∣
∣
DFE

=−diag(dI + γI )

The basic reproduction number R0 is given by the spectral radius of the next-
generation matrix −FV−1 (Diekmann et al. 1990; Driessche and Watmough 2002).
Hence, we deduce that

R0 = ρ(−diag(N̄ )Pdiag(B)diag(Ñ )−1
P
t V−1)

�

Appendix 2: Proof of Theorem 2.1

The proof uses the method in Iggidr et al. (2012) which is based on Hirsch’s theorem
(Hirsch 1984).

Theorem 5.1 (Hirsch 1984) Let ẋ = F(x) be a cooperative differential equation for
which R

n+ is invariant , the origin is an equilibrium, each DF(x) is irreducible, and
that all orbits are bounded. Suppose that

x > y �⇒ DF(x) < DF(y) for all x, y.

Then, all orbits in R
n+ tend to zero or there is a unique equilibrium p∗ in the interior

of Rn+ and all orbits in Rn+ tend to p∗.

Proof of Theorem 2.1 Equation (6) can be written as:

İ = (F + V )I − diag(I )Pdiag(B)diag(Ñ )−1
P
t I (14)

where F = diag(N̄ )Pdiag(B)diag(Ñ )−1
P
t and V = −diag(dI + γI ), as defined in

“Appendix 1.” Let us denote by X (I ) the semi-flow induced by (14). Hence,

DX (I ) = diag(N̄ − I )Pdiag(B)diag(Ñ )−1
P
t + V − W (I1, I2) (15)
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where W (I1, I2) = diag(Pdiag(B)diag(Ñ )−1
P
t I ). Since P is irreducible and I ≤

N̄ , DX (I ) is clearly Metzler irreducible matrix. That means, the flow is strongly
monotone. Plus, DX (I ) is clearly decreasing with respect of I . Hence, by Hirsch’s
theorem all trajectories either go to zero or go to an equilibrium point Ī � 0. From the
relation (15), we have DX (0) = F +V where F and V are the one defined previously
in “Appendix 1.” However, since F a nonnegative matrix and V is Metzler, we have
the following equivalence

α(F + V ) < 0 ⇐⇒ ρ(−FV−1) < 1

where α(F + V ) is the stability modulus, i.e., the largest real part of eigenvalues, of
F + V and ρ(−FV−1) the spectral radius of −FV−1. Hence, the DFE is globally
asymptotically stable if R0 = ρ(−FV−1) < 1. And if R0 > 1, i.e., α(F + V ) > 0,
the DFE is unstable (Driessche and Watmough 2002). Since, we have proved that
DX (I ) is a Metzler matrix, to prove the local stability of the endemic equilibrium
Ī � 0, we only need to prove that it exists w � 0 such that DX ( Ī )w < 0 (Berman
and Plemmons 1994). The endemic equilibrium Ī � 0 satisfies the equation

(F + V ) Ī − diag( Ī )Pdiag(B)diag(Ñ )−1
P
t Ī = 0

Hence,

DX ( Ī ) Ī = −W ( Ī ) Ī < 0

Hence, with w = Ī , we deduce that Ī is locally stable. With the attractivity of
Ī guaranteed Hirsh’s theorem, we conclude that the endemic equilibrium Ī � 0 is
globally asymptotically stable if R0 > 1.

Finally, ifR0 = 1, we have α(F+V ) = 0. It exists c � 0 such that (F+V )t c = 0.
By considering the Lyapunov function V = 〈c|I 〉. This function is definite positive
and its derivation along the trajectories if (14) is

V̇ = 〈
c| İ 〉

=
〈
c|(F + V )I − diag(I )Pdiag(B)diag(Ñ )−1

P
t I
〉

= −
〈
c|diag(I )Pdiag(B)diag(Ñ )−1

P
t I
〉

≤ 0 (16)

Plus V̇ = 0 only at the DFE. Hence, the DFE is GAS if R0 = 1. This completes the
proof of the Theorem 2.1. �

Appendix 3: Proof of Theorem 2.2

Proof Since System (6) has an attracting compact �, then according to Theorem
(2.1), we can expect that limt→∞ Ii (t) <

bi
di
; thus, for time large enough, we can have

bi
di

− Ii > 0, therefore we have
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İi > Ii

(
bi
di

− Ii

)
⎛

⎝
n∑

j=1

β j p2i j
∑n

k=1 pkj
bk
dk

⎞

⎠− (di + γi )Ii

which indicates that when Ri
0(P) > 1

İi
Ii

∣
∣
Ii=0 = bi

di

⎛

⎝
n∑

j=1

β j p2i j
∑n

k=1 pkj
bk
dk

⎞

⎠− (di + γi ) > 0.

Then apply the average Lyapunov Theorem (Hutson 1984), we can conclude that
lim inf t→∞ Ii (t) > 0; i.e., the disease in the residence Patch i is persistent ifRi

0(P) >

1 .
If pi j > 0 and pkj = 0 for all k = 1, . . . , n, and k �= i , this implies that if there is

a portion of the residence Patch i population flowing into the residence Patch j , then
there is no other residence Patch k where k �= j , i.e.,

β j pi j

n∑

k=1,k �=i

pk j Ik = 0

which also implies that

(
bi
di

− Ii

) n∑

j=1

β j pi j
∑n

k=1,k �=i pk j Ik
∑n

k=1 pkj
bk
dk

= 0.

then we can conclude that Model (6) can have an equilibrium since under these con-
ditions,

bi
di

n∑

j=1

β j pi j
∑n

k=1,k �=i pk j Ik
∑n

k=1 pkj
bk
dk

= bi
di

βi
∑n

k=1,k �=i pki Ik
∑n

k=1 pkj
bk
dk

= 0.

Therefore, if the conditions pkj = 0 for all k = 1, . . . , n, and k �= j whenever
pi j > 0 hold, then we have

İi |Ii=0 =
⎡

⎣Ii

(
bi
di

− Ii

)
⎛

⎝
n∑

j=1

β j p2i j
∑n

k=1 pkj
bk
dk

⎞

⎠

+
(
bi
di

− Ii

) n∑

j=1

β j pi j
∑n

k=1,k �=i pk j Ik
∑n

k=1 pkj
bk
dk

− (di + γi )Ii

⎤

⎦
∣
∣
∣
∣
Ii=0

= bi
di

n∑

j=1

β j pi j
∑n

k=1,k �=i pk j Ik
∑n

k=1 pkj
bk
dk

= 0.
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Therefore, Ii = 0 is the invariant manifold for Model (6).
On the other hand, when these conditions hold, then we have

Ri
0(P) = Ri

0 ×
n∑

j=1

(
β j

βi

)

pi j

⎛

⎝

(
pi j

bi
di

)

∑n
k=1 pkj

bk
dk

⎞

⎠ = Ri
0 ×

n∑

j=1

(
β j

βi

)

pi j .

Therefore, ifRi
0(P) = Ri

0 ×∑n
j=1

(
β j
βi

)
pi j < 1, then we have the following inequal-

ity:

İi
Ii

= Ii

(
bi
di

− Ii

)
⎛

⎝
n∑

j=1

β j p2i j
∑n

k=1 pki
bk
dk

⎞

⎠− (di + γi )Ii

≤ Ii

⎡

⎣bi
di

⎛

⎝
n∑

j=1

β j p2i j
∑n

k=1 pki
bk
dk

⎞

⎠− (di + γi )

⎤

⎦

= Ii

⎡

⎣
n∑

j=1

β j pi j − (di + γi )

⎤

⎦ < 0.

Therefore, we have limt→∞ Ii (t) = 0; i.e., there is no endemic in the residence Patch
i . �
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