
A RANK INEQUALITY FOR THE TATE CONJECTURE OVER
GLOBAL FUNCTION FIELDS

CHRISTOPHER LYONS

We present an observation of D. Ramakrishnan concerning the Tate Con-
jecture for varieties over a global function field (i.e., the function field of
a smooth projecture curve over a finite field), which was pointed out dur-
ing a lecture given at the AIM’s workshop on the Tate Conjecture in July
2007. The result is perhaps “known to the experts,” but we record it here,
as it does not appear to be in print elsewhere. We use the global Langlands
correspondence for the groups GLn over global function fields, proved by
L. Lafforgue [Laf], along with an analytic result of H. Jacquet and J. Sha-
lika [JS] on automorphic L-functions for GLn. Specifically, we use these to
show (see Theorem 1.1 below) that, for a prime ` , char k, the dimension
of the subspace spanned by the rational cycles of codimension m on our
variety in its 2m-th `-adic cohomology group (the so-called algebraic rank)
is bounded above by the order of the pole at s = m + 1 of the associated
L-function (the so-called analytic rank). The interest in this result lies in the
fact that, with the exception of some special instances like certain Shimura
varieties and abelian varieties which are potentially CM type, the analogous
result for varieties over number fields is still unknown in general, even for
the case of divisors (m = 1).

1. P M R

Tate’s original article [Tat1] serves as a good reference for this section,
and also gives insight into the motivation behind the conjectures. The simi-
lar case of varieties overQ, which has the additional advantage that singular
cohomology and Hodge theory can be brought to bear on the problem, is
discussed in §1 of [Ram].

Let X be a smooth, projective, geometrically connected variety over a
global function field k. Let Fq denote the constant field of k and k̄ its sep-
arable closure. Fix a prime ` , char k. For an integer 0 ≤ m ≤ dim X,
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write
V` = H2m

ét (X ×k k̄,Q`)

for the 2m-th `-adic cohomology group, which is a finite-dimensional vector
space over Q`. The natural action of Γk := Gal(k̄/k) on k̄ gives an action of
Γk on X×kk̄, which in turn gives rise to a continuous linear action of Γk on V`.
Thus we get a continuous representation ρ` : Γk → AutQ`(V`). Moreover, for
almost every place v of k (i.e., for all but a finite number), ρ` is unramified
at v, in the sense that the inertia subgroup Iv of any decomposition group Dv

for v is in the kernel of ρ`.
To this representation ρ` of Γk can be associated an L-function L(ρ`, s);

we will not need the full L-function, but rather the incomplete form LS (ρ`, s),
where S is any finite set of places containing those where either ρ` is rami-
fied or X has bad reduction. By definition,

LS (ρ`, s) =
∏
v<S

Lv(ρ`, s),

where
Lv(ρ`, s) = det

(
1 − q−s

v ρ`(Frv)
)−1

for any v < S . Here Frv is the geometric Frobenius conjugacy class of
v in Γk and qv is the residue cardinality of v. Then by the proof of the
Weil Conjectures [Del2], we have Lv(ρ`, s) = Zv(q−s

v )−1, where Zv(T ) is a
polynomial with coefficients in Z which factors as

Zv(T ) =
b∏

i=1

(1 − αi,vT ),

where b = dimQ` V` and each αi,v has absolute value qm
v under any complex

embedding. (Note that the αi,v are the eigenvalues of ρ`(Frv).) It follows
that the Euler product LS (ρ`, s) converges absolutely for Re(s) > m+ 1, and
in fact uniformly on compact subsets, giving a holomorphic function in this
half-plane.

Now let Cm denote group of cycles of codimension m on X, which is the
free abelian group generated by closed irreducible subvarieties of codimen-
sion m on X ×k k̄. Let

V`(m) := V` ⊗Q` Q`(m);

here we set
Q`(1) :=

(
lim
←−−

j

µ` j

)
⊗Z` Q`,
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with the action of Γk given by its action on each µ` j , the group of ` jth roots
of unity of in k̄, and then we take Q`(m) := Q`(1)⊗m. (One calls V`(m) the
mth Tate twist of V`.) One can show (see [Mil], VI.9) the existence of a
canonical cycle class map

clm : Cm → V`(m).

There is a natural Γk-action on Cm coming from that on X ×k k̄, and it turns
out that clm is a morphism of Γk-modules (i.e., is a Γk-equivariant map).
This means that a cycle in (Cm)Γk maps into V`(m)Γk .

Define the following quantities:

r(m)
alg,k = dimQ`

[
clm

(
(Cm)Γk

)
⊗ Q`
]
,

r(m)
`,k = dimQ` V`(m)Γk ,(1a)

r(m)
an,k = −ords=m+1LS (ρ`, s).

(If LS (ρ`, s) is known to have meromorphic continuation to the point s =
m + 1, this last quantity makes sense as the order of pole at s = m + 1;
otherwise we take it to be the unique integer a, if it exists, such that

lim
s→m+1

(s − m − 1)aLS (ρ`, s)

is finite and nonzero. Also note that r(m)
an,k is independent of our choice of

S by Deligne’s proof of the Weil Conjectures, as long as S satisfies the
aforementioned conditions.) The first and last quantities are referred to as
the algebraic and analytic ranks, respectively. The Γk-equivariance of clm

above gives that

r(m)
alg,k ≤ r(m)

`,k .

J. Tate’s conjecture [Tat1] is that, in fact, all three quantities in (1a) are
equal.

In §4 we will show

Theorem 1.1. For a smooth, projective, geometrically connected variety X
over a global function field k, we have

r(m)
`,k ≤ r(m)

an,k,

and thus

r(m)
alg,k ≤ r(m)

an,k,

for any 0 ≤ m ≤ dim X.
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We remark that one knows r(m)
alg,k ≥ 1; indeed, thinking of X as embedded

in some projective space over k, the (nonzero) cycle class of a hyperplane
section is defined over k, and its m-fold cup product gives a nonzero cycle
class in V`(m). Thus the theorem gives r(m)

an,k ≥ 1 as well.

2. A   GLn(Ak)   L-

Our strategy in proving that r(m)
`,k = r(m)

an,k is to use Lafforgue’s result that
the representation ρ` is modular; that is to say, there is an automorphic rep-
resentation of GLn(Ak) whose L-function has the same analytic behavior as
that of ρ`. This is fortuitous, since the analytic behavior of automorphic
L-functions is a priori much better understood than that of L-functions of
Galois representations such as ρ`. For this reason, we take this to section
to briefly recall facts about L-functions of cuspidal automorphic represen-
tations. We refer the reader to §1.2 of [Ram] or §1.1 of [Lau] for a more
thorough introduction.

With k still being a global function field, let Ak denote its ring of adeles,
and let ω denote a unitary idele class character of k. We define a space of
functions

L2(ω) := L2(GLn(k)Z(Ak)\GLn(Ak), ω),

where Z(Ak) ' A×k denotes the center of GLn(Ak), as the (classes of) mea-
surable functions φ : GLn(Ak)→ C which satisfy

• φ(γgz) = ω(z)φ(g) for all γ ∈ GLn(k), g ∈ GLn(Ak), and z ∈ Z(Ak),
•
∫

GLn(k)Z(Ak)\GLn(Ak)
|φ(g)|2 dg < ∞;

note that the second condition makes sense, since the first condition and ω
being unitary allow |φ| to descend to a function on GLn(k)Z(Ak)\GLn(Ak).
There is a subspace L2

cusp(ω) of L2(ω) of those functions φ satisfying the
following condition: if U is the unipotent radical of any standard parabolic
subgroup of GLn, then we have∫

U(k)\U(Ak)
φ(ug)du = 0

for almost all g ∈ GLn(Ak). This subspace L2
cusp(ω) is referred to as the

space of cusp forms on GLn(Ak) of central character ω.
We have a left action of GLn(Ak) on L2(ω) by right translations (that is,

by the action (h · ϕ)(g) := ϕ(gh) for h ∈ GLn(Ak)). This action happens
to preserve L2

cusp(ω), and thus L2
cusp(ω) yields a complex representation of



A RANK INEQUALITY FOR THE TATE CONJECTURE 5

GLn(Ak). This representation comes with a number of desirable properties:
in particular, we have a semisimple decomposition

L2
cusp(ω) '

⊕̂
π
Vmπ
π ,

where (π,Vπ) runs over a system of representatives for isomorphism classes
of irreducible admissible complex representations of GLn(Ak). Further-
more, the multiplicity one theorem for GLn of Shalika says that, for any
such π, we have either mπ = 1 or mπ = 0. We define a cuspidal automor-
phic representation of GLn(Ak) (or simply a cuspidal representation) with
central character ω to be any component (π,Vπ) of this direct sum for which
mπ = 1.

Now let ω be an arbitrary idele class character of A×k /k
×, which is not

necessarily unitary. Let ‖·‖Ak
denote the adelic norm on Ak. Then there is a

unique t ∈ R and a unique unitary idele class character ω0 such that

ω = ω0 ‖·‖
t
Ak
.

One may take the definition of a cuspidal representation π of GLn(Ak) with
central character ω to be one of the form

π := π′ ⊗ (‖·‖tAk
◦ det),

where π′ is a cuspidal representation of GLn(Ak) with central character ω0,
as defined above. From now on, we use the term “cuspidal representation”
in this sense, with no restriction on the central character unless otherwise
specified.

For each cuspidal representation π, it turns out that π '
⊗′

v πv, which
is a restricted tensor product that runs over the places v of k. Each factor
(πv,Vπv) is a complex representation of GLn(kv) which is irreducible and
admissible. Let Ov be the ring of integers in kv and let Kv = GLn(Ov). We
say that πv is unramified if VKv

πv is nontrivial. For cuspidal π, one knows πv

is unramified for almost every v.
Inspired by a theorem of I. Satake, R. Langlands attached to any un-

ramified irreducible admissible complex representation πv of GLn(kv) an
unordered n-tuple

{
β1,v, β2,v, . . . , βn,v

}
of nonzero complex numbers. These

numbers, called the Langlands parameters (or just the parameters) of πv,
determine πv up to isomorphism. Hence a cuspidal representation π deter-
mines such an n-tuple for all v at which π is unramified.
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One fact needed below is that, if λ is an idele class character and π′ is a
cuspidal representation, then the representation

π := π′ ⊗ (λ ◦ det)

is also cuspidal. Furthermore, if v is a place such that λv is unramified and
π′v is unramified with parameters

{
β j,v
}
, then πv is also unramified and has

parameters
{
β j,vλ($v)

}
, where $v is a uniformizer for kv.

Given π, it is known ([JS],[JPSS]) that knowledge of the parameters of πv

for almost every unramified v is enough to determine π up to isomorphism,
as long as π has unitary central character (which is always true after an
appropriate twist by ‖·‖tAk

, t ∈ R):

Theorem 2.1 (“strong mulitiplicity one”; Jacquet, I. Piatetski-Shapiro, Sha-
lika). Suppose π1 and π2 are two cuspidal representations, both with unitary
central character, satisfying π1,v ' π2,v for all v outside some finite set S of
places of k. Then π1 ' π2.

If πv is unramified, define

Lv(π, s) =
[
(1 − β1,vq−s

v ) · · · (1 − βn,vq−s
v )
]−1

and let
LS (π, s) =

∏
v<S

Lv(π, s)

be the incomplete L-function associated to π, where S is a finite set of places
containing those at which π is ramified. Then in [JS] (see Propositions 3.3
and 3.6) the following result is proved:

Theorem 2.2 (Jacquet, Shalika). Suppose that π has unitary central char-
acter. Then LS (π, s) is holomorphic for Re(s) > 0 if π is not an idele class
character of the form ‖·‖itA, t ∈ R.

On the other hand, when π = ‖·‖itA, so that n = 1 and πv is unramified
everywhere, we have β1,v = q−it

v for all v. Hence in this case, LS (π, s) is the
translated Dedekind zeta function ζk(s + it) of k (divided by a finite number
of Euler factors if S , ∅), which is holomorphic in C except for a simple
pole at s = 1 − it. In particular, we have

Corollary 2.3. Suppose that π has unitary central character. Then

(3a) − ords=1 LS (π, s) =

1 if π trivial

0 if π nontrivial
.



A RANK INEQUALITY FOR THE TATE CONJECTURE 7

3. `-    L   k 
GLn

Lafforgue’s result pairs each irreducible `-adic Galois representation with
a cuspidal representation. We will describe the objects on the first side more
explicitly, and then describe the correspondence. The survey [Lau] is a good
reference for this material, notably §1.2 and §1.3. We then give an easy
extension of this result.

For any n ≥ 1, we will define an n-dimensional `-adic representation of
Γk to be a continuous homomorphism σ` : Γk → AutQ̄`(M) for some finite-
dimensional vector space M over Q̄`. Let G′n denote a system of repre-
sentatives for the isomorphism classes of irreducible n-dimensional `-adic
representations σ` of Γk which satisfy the following three additional prop-
erties:

(i) There is a basis of M such that, when using this basis to identify
AutQ̄`(M) with GLn(Q̄`), one has σ`(Γk) ⊆ GLn(E) for some finite
extension E ⊆ Q̄` of Q`.

(ii) There are only a finite number of places v of k at which σ` is rami-
fied, in the sense described in §1.

(iii) The character detσ` is of finite order.

At this point, we fix once and for all an isomorphism ι : Q̄` → C. To any
such σ` we can assign an incomplete L-function LS (σ`, s), for a finite set S
containing the ramified places of σ`, in exactly the same manner as in §1:
for v < S , set

(4a) Lv(σ`, s) = det
(
1 − q−s

v σ`(Frv)
)−1

and then set

LS (σ`, s) =
∏
v<S

Lv(σ`, s).

Thanks to the isomorphism ι, we view this as a complex L-function.
Let A′n denote a system of representatives for the isomorphism classes

of cuspidal representations of GLn(Ak) with finite order central character.
Then the following global Langlands correspondence for GLn was proved
for the case n = 2 by V. Drinfeld [Dri1],[Dri2] and later extended to all
cases n > 2 by Lafforgue [Laf] (with the case n = 1 following from class
field theory for k):
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Theorem 3.1 (Lafforgue). There is a unique bijection G′n → A
′
n, σ` 7→ π,

such that for almost every place v at which σ` and π are unramified,

Lv(σ`, s) = Lv(π, s).

We now discuss how to extend this theorem to the case where the “finite
order” restrictions are removed from the definitions of G′n andA′n. This ex-
tension is something which is presumably well-known to experts, but does
not seem to be written down. The key ingredient is the description of un-
ramified (Galois and idele class) characters for k given by class field theory
in the function field setting.

Define An to be a system of representatives for the isomorphism classes
of cuspidal representations of GLn(Ak) (with no restriction on the central
character). Also letGn be defined exactly asG′n above, but without condition
(iii), and define Lv(σ`, s) using (4a) if σ` ∈ Gn is unramified at v. Then we
have the following:

Corollary 3.2. There is a unique bijection Gn → An, σ` 7→ π, such that for
almost every place v at which σ` and π are unramified,

(4b) Lv(σ`, s) = Lv(π, s).

(We note that it is this bijection which is stated in the papers of Drinfeld.
The finite-order assumptions are only present in Lafforgue’s work, and are
not serious obstacles, as this corollary demonstrates.)

Before getting to the proof of this corollary, we need the following result:

Lemma 3.3. Let E be a finite extension of Q` and let χ : Γk → E× be a
continuous character. Then there is a finite power of χ which is unramified
everywhere.

We remark that this statement is false for number fields, due mainly to
the presence of archimedean places. (See §5 for more details.)

Proof of 3.3. By compactness of Γk, we may assume χ takes values in
O×E ⊆ E× by changing basis ([Ser], p.1). We have an isomorphism

O×E ' µE × OE,

where µE is the group of roots of unity in E. If `r is the cardinality of the
residue field of E, then µE is cyclic of order `r−1, whileOE is a pro-` group.

Now let v be any place of k. By local class field theory, if Iv is the inertia
subgroup of any decomposition group Dv ⊆ Γk of v, then the image of Iv

in the abelianization Γab
k of Γk is the product of a finite cyclic group and a
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pro-p group, where p = char k , `. Since χ factors through Γab
k , this forces

χ(Iv) ⊆ µE × {0} and shows that χ`
r−1 is unramified. �

Proof of 3.2. Pick any σ` ∈ Gn, and suppose, by (i), that σ` takes values in
GLn(E) for a finite extension E of Q`.

The character χ = detσ` is continuous and takes values in E×, so by the
lemma we pick w ∈ Z such that χw is unramified. By global class field the-
ory for k (see [AT], p.76), this means that χw factors through Gal(kF̄q/k) '
Gal(F̄q/Fq) ' Ẑ (recall that Fq is the constant field of k) and is completely
determined by the image of 1 ∈ Ẑ. Denoting this element as χw(1) by abuse
of notation, we choose some z ∈ Q̄` such that zwn = χw(1).

Let λ` : Γk → E(z)× be the unique unramified character such that, again
by abuse of notation, λ`(1) = z and thus λwn

` = χw. By global class field
theory, λ` corresponds to an unramified idele class character λ : A×k /k

× →

C×, in the sense that λ`(Frv) = λ($v) for all v, where $v is a uniformizer
of kv. (Note that this is the opposite convention of that in [AT], since Frv is
the geometric Frobenius. Also recall we have identified Q̄` with C via the
fixed isomorphism ι.)

Since σ` is unramified almost everywhere, σ` ⊗ λ
−1
` is a continuous rep-

resentation of Γk which also is unramified almost everywhere and that takes
values in GLn(E(z)). Furthermore,

(det(σ` ⊗ λ
−1
` ))w = (χλ−n

` )w = 1,

i.e., the determinant of σ` ⊗ λ
−1
` has finite order. Thus Theorem 3.1 gives

a unique cuspidal representation π′, with central character of finite order,
such that

(4c) Lv(π′, s) = Lv(σ` ⊗ λ
−1
` , s)

for almost all v.
Let S be a finite set of places containing those for which (4c) does not

hold, as well as the ramified places of π′ and σ`. For v < S , (4c) means that
the parameters

{
β j,v
}

of π′v coincide with the eigenvalues of(
σ` ⊗ λ

−1
`

)
(Frv) = σ`(Frv)λ`(Frv)−1.

This implies that the parameters
{
β j,vλ($v)

}
of the cuspidal representation

π = π′ ⊗(λ ◦ det) coincide with the set of eigenvalues of σ`(Frv), and there-
fore that

Lv(π, s) = Lv(σ`, s)

for v < S .
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Let us denote this construction of π from σ` as rn : σ` 7→ π. We have
verified that almost all local L-factors of σ` and π agree, as required in
the statement of the corollary. We now verify that rn satisfies the other
necessary properties.

rn is well-defined: The only potential ambiguity in our construction is
the choice of z such that zwn = χw(1), and hence the choice of λ`. Suppose
that λ̃` were another valid choice, corresponding to the idele class character
λ̃. Then the representations π′ and π̃′ associated to σ` ⊗ λ

−1
` and σ` ⊗ λ̃

−1
` ,

respectively, may indeed differ. However, the representations π′ ⊗ (λ ◦ det)
and π̃′ ⊗ (λ̃ ◦ det) will be the same, as one can verify by comparing their pa-
rameters and using the strong multiplicity one theorem. Hence π is defined
unambiguously.

rn is injective: Here one uses the fact that knowledge of almost every lo-
cal factor Lv(σ`, s) determines σ` up to isomorphism, essentially by Cheb-
otarev density (see the theorem on p.I-10 of [Ser], which applies to all
global fields).

rn is surjective: Pick π ∈ An with central character ω. Then

ω = ω f ‖·‖
y
Ak

for a finite order character ω f and some y ∈ C. Indeed, because k is a
function field, this follows from the fact that the kernel of ‖·‖Ak

is compact
and countable, and so its complex characters are all of finite order, as well as
the fact that the image of ‖·‖Ak

is isomorphic to Z. Let λ = ‖·‖yAk
, which is an

unramified idele class character, and let λ` : Γk → Q̄
×
` be the corresponding

unramified `-adic character, in the sense described above. Then π ⊗ (λ ◦
det)−1 ∈ A′n corresponds, by the theorem, to a representation σ′` ∈ G

′
n, and

one checks that this implies

Lv(π, s) = Lv(σ′` ⊗ λ`, s)

for almost every v. Thus π corresponds to σ` := σ′` ⊗ λ`.
rn is the unique bijection satisfying (4b) for almost all v: Were there

another bijection with this property, we would wind up with two noniso-
morphic cuspidal representations π1, π2 whose parameters match at almost
every place v. Thus, for some place v, we have an isomorphism π1,v ' π2,v

of unramified representations of GLn(kv). This implies the central charac-
ters of π1,v and π2,v are both equal to | · |zv for some z ∈ C; here, | · |v is the
normalized absolute value on kv. It follows that if

π′i := πi ⊗ (‖·‖−Re z
Ak

◦ det)
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for i = 1, 2, then each π′i has unitary central character and π′1,v ' π′2,v for
almost every v. By the strong multiplicity one theorem, this gives π′1 ' π

′
2,

and hence π1 ' π2, a contradiction. So rn must be the unique bijection with
the given property. �

4. P  T 1.1

Recall the setup and notation in §1. We have now reviewed the tools
needed to prove our main result:

Theorem 1.1. For a smooth, projective, geometrically connected variety X
over a global function field k, we have

r(m)
`,k ≤ r(m)

an,k,

and thus
r(m)

alg,k ≤ r(m)
an,k,

for any 0 ≤ m ≤ dim X.

Proof. Let ρ`(m) : Γk → AutQ` V`(m) denote the m-th Tate twist of ρ`.
The semisimplification of the extension of ρ`(m) to an action on V`(m) ⊗

Q̄` is a direct sum of irreducible Q̄`-representations. An easy exercise shows
the existence of a finite extension E/Q` over which this semisimple decom-
position is defined. In other words, we have

(V`(m) ⊗ E)ss =
⊕

i

Mi

where each Mi is an E-vector space such that Γk acts irreducibly on Mi ⊗ Q̄`
(and hence irreducibly on Mi) via the extension of ρ`(m).

Let ρi : Γk → AutQ̄`(Mi ⊗ Q̄`) denote the irreducible Q̄`-representation
defined by ρ`(m). Recall from §1 that, because ρ`(m) arises from the co-
homology of X, it is unramified at almost every place of k; thus ρi inherits
this property as well. Hence, because ρi is defined over a finite extension
E/Q` as just remarked, it follows that ρi ∈ Gni in the notation of §3, where
ni = dim Mi. By Corollary 3.2, there is a unique cuspidal representation
πi ∈ Ani such that

(5a) Lv(πi, s) = Lv(ρi, s)

for almost every v.
Recall from §1 that the eigenvalues of almost every ρ`(Frv) are algebraic

and have absolute value qm
v for any complex embedding. Since the action

of Γk on the Q`(m) is unramified everywhere, and Frv acts on it by q−m
v , it
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follows that the eigenvalues of almost every ρ`(m)(Frv) have absolute value
1 in every complex embedding. Thus the same is true of the eigenvalues
of almost every ρi(Frv). Following the proof of 3.2, this implies that the
central character of πi is unitary.

For the rest of the proof, fix a finite set of places S of k satisfying the
following: If v < S , then ρ`(m) (and hence each ρi) is unramified at v, X has
good reduction at v, and (5a) holds for all i.

The knowledge of almost every local L-factor Lv(πi, s) equivalent to know-
ing the parameters of almost every unramified local representation πi,v and
so, by the strong multiplicity one theorem (applicable because πi has uni-
tary central character), this knowledge determines πi up to isomorphism.
On the other hand, Chebotarev density (see [Ser], loc. cit.) shows that
knowledge of almost every local L-factor Lv(ρi, s) determines ρi up to iso-
morphism. Hence the equalities in (5a), which hold for all v < S , show that
πi is trivial (i.e., Lv(πi, s) = 1 − q−s

v for all v) if and only if ρi is trivial (i.e.,
Lv(ρi, s) = 1 − q−s

v for all v). So by Corollary 2.3 we get

(5b) −ords=1LS (ρi, s) =

1 if ρi trivial

0 if ρi nontrivial
.

Next we note that for v < S , the local L-factor Lv(ρ`(m), s) is the same
whether we regard Γk as acting on V`(m) or on V`(m) ⊗ Q̄`. Thus for v < S
we have

Lv(ρ`(m), s) =
∏

i

Lv(ρi, s),

and hence
LS (ρ`(m), s) =

∏
i

LS (ρi, s).

By (5b) this gives

−ords=1LS (ρ`(m), s) = −
∑

i

ords=1LS (ρi, s)

≥ dimQ̄`(V`(m) ⊗ Q̄`)Γk

= dimQ` V`(m)Γk

= r(m)
`,k .

On the other hand, applying the Tate twist to ρ` has the effect of translation
on its L-function, namely LS (ρ`(m), s) = LS (ρ`, s + m). Therefore,

r(m)
an,k = −ords=m+1LS (ρ`, s) = −ords=1LS (ρ`(m), s) ≥ r(m)

`,k .
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Since we automatically have r(m)
alg,k ≤ r(m)

`,k , this completes the proof. �

5. R       

The formulation of the Tate Conjecture in §1 for the case of global func-
tion fields also makes sense when k is a number field, provided that the
finite set of places S also includes the archimedean ones. One can then
ask when the inequality r(m)

alg,k ≤ r(m)
an,k is known to hold. In most cases

where this is known to be true, such as some Shimura varieties for m = 1
[BR],[Kli],[MR] or Hilbert modular fourfolds for m = 2 [Ram], or certain
K3 surfaces [SI], the full Tate Conjecture has actually been established.

If the Langlands conjectures for GLn over number fields could be estab-
lished, one could use the methods in this article to prove

(6a) r(m)
alg,k ≤ r(m)

`,k ≤ r(m)
an,k,

since Theorem 2.2 holds, in fact, for all global fields. We remark, though,
that this conjectural correspondence for number fields is not just a simple
analogue of Theorem 3.1 and Corollary 3.2, due to the extra difficulties
imposed by the places lying over ` and ∞. One notable difference is that
one must restrict attention to so-called algebraic cuspidal representations
[Clo]. In case n = 1, this corresponds to A. Weil’s notion of an idele class
character of type A0 [Wei]. This is an idele class character χ such that, if v
is archimedean, then χv(z) = zpv z̄qv; furthermore, we have pv + qv = w for
some w ∈ Z (the weight of χ) and all such v.

We note in passing that an idele class character of type A0 with nonzero
weight gives a counterexample to Lemma 3.3 in the number field case, since
no nonzero power would be trivial at the archimedean places.

Unfortunately, as it currently stands, the representation ρ` is known to
correspond to an algebraic cuspidal representation in only a handful of
cases. Below we discuss one case where enough is known about ρ` to es-
tablish (6a). Recall that an abelian variety X over k is said to be potentially
CM-type if we can find a commutative semisimple algebra Λ of dimension
2(dim X) over Q and an isomorphism

θ : Λ ˜−→Endk̄(X) ⊗ Q.

Proposition 5.1. Let X be abelian variety over the number field k which is
potentially CM-type. Then

r(m)
alg,k ≤ r(m)

an,k

for all 0 ≤ m ≤ dim X.
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Proof. Keeping the notation above, there is a finite Galois extension L/k
such that all elements of

θ(Λ) ∩ Endk̄(X)

are rational over L, and thus the action of ΓL on H1
ét(X ×k k̄,Q`) is abelian.

Hence ΓL acts via a direct sum of characters if we extend scalars to Q̄`, and
these characters are associated to idele class characters of type A0 in the
sense given in the proof of Corollary 3.2 [ST].

It is known that, as with any abelian variety, we have an isomorphism of
Γk-modules

Hr
ét(X ×k k̄,Q`) ' ∧rH1

ét(X ×k k̄,Q`)

(see [Mum], for instance). Therefore the action of ΓL on Hr
ét(X ×k k̄,Q`) is

also associated to idele class characters of type A0 after extension to Q̄`.
We focus on the case r = 2m, letting V` = H2m

ét (X×kk̄,Q`) and ρ`(m) : Γk →

AutQ`(V`(m)) as in §4. Then once again the semisimplification of the exten-
sion of ρ`(m) is a direct sum of irreducible Q̄`-representations Mi of Γk:

(V`(m) ⊗ Q̄`)ss =
⊕

i

Mi.

As before, let ρi denote the Q̄`-representation defined on Mi by ρ`(m).
The observations above say that ρi |ΓL

is a direct sum of characters associ-
ated to idele class characters of type A0. Due to this condition, a result of H.
Yoshida ([Yos], Theorem 1) gives a continuous finite-dimensional complex
representation

ri : Wk → AutC(Ni)

of the Weil group Wk of k and a finite set of places S such that

Lv(ri, s) = Lv(ρi, s)

for all v < S . Yoshida’s construction guarantees that ri is irreducible if and
only if ρi is irreducible ([Yos], Theorems 1 and 2), so ri is irreducible. We
refer the reader to [Tat2] for the notions of Weil groups, their representa-
tions, and the associated L-functions, as well as for facts listed below; for a
very complete discussion of these matters, see [Del1].

Following the same strategy as in the proof of Theorem 1.1, it suffices,
for the completion of the proposition, to establish that

(6b) −ords=1LS (ri, s) = dimC NWk
i .
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We will do this by relating ri to characters of the Weil group, which are just
idele class characters, and then using the analogue of Corollary 2.3 for the
L-functions of such characters.

First we use the existence of a finite extension Ei/k such that ri is the
induction of a primitive representation of WEi . (Here, primitive means that
it is not induced from a smaller subgroup.) In fact, one knows that ri =

Indk
Ei

(ti ⊗ χi), where ti is a representation of WEi of Galois type and χi is
a character of WEi . Thus ti is a representation of WEi pulled back via the
surjection WEi → Gal(k̄/Ei), while χi is an idele class character by virtue of
the isomorphism A×Ei

/E×i ' Wab
Ei

.
Next, Brauer’s induction theorem says that

ti ⊕
⊕
α

nαIndEi
Fα

(ψα) '
⊕
β

n′βIndEi
F′β

(ψ′β)

for some finite extensions Fα/Ei, F′β/Ei, (idele class) characters ψα, ψ′β,
and positive integers nα, n′β. (In other words, ti is a finite virtual sum of
inductions of characters in the Grothendieck group.) Since Ind(ψ)⊗ χi '

Ind(ψ⊗Res (χi)), we have

(6c) (ti ⊗ χi) ⊕
⊕
α

nαIndEi
Fα

(ψαResFα(χi)) '
⊕
β

n′βIndEi
F′β

(ψ′βResF′β(χi)).

From this we conclude two things.
The first is that

LS (ri, s) = LS i(ti ⊗ χi, s)

=
∏
α

LS α(ψαResFα(χi), s)−nα
∏
β

LS ′β(ψ′βResF′β(χi), s)n′β ,

where S i (resp., S α, S ′β) is the finite set of places in Ei (resp., Fα, F′β) lying
above those in S . Hence we have

−ords=1LS (ri, s) =
∑
α

nαords=1LS α(ψαResFα(χi), s)

−
∑
β

n′βords=1LS ′β(ψ′βResF′β(χi), s).(6d)

The L-functions on the right side of (6d) are of the form LΣ(ω, s) for some
idele-class character ω and finite set of places Σ, and for such L-functions
we have

−ords=1LΣ(ω, s) =

1 if ω = 1

0 if ω , 1
.
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Hence (6d) becomes

−ords=1LS (ri, s) =
∑
β

n′β

 1 if ψ′βResF′β(χi) = 1
0 if ψ′βResF′β(χi) , 1


−
∑
α

nα

{
1 if ψαResFα(χi) = 1
0 if ψαResFα(χi) , 1

}
.(6e)

The second consequence of (6c) is that the dimension of the trivial rep-
resentation in ti ⊗ χi (and in ri by induction) is equal to∑

β

n′β

 1 if ψ′βResF′β(χi) = 1
0 if ψ′βResF′β(χi) , 1

 −∑
α

nα

{
1 if ψαResFα(χi) = 1
0 if ψαResFα(χi) , 1

}
,

since Ind(ω) will contain the trivial representation only if ω = 1, and in that
case it will occur with dimension one. So putting this together with (6e),
we get (6b) as desired. �
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