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Abstract. The BHK mirror symmetry construction stems from work Berglund

and Hübsch [BH2], and applies to certain types of Calabi-Yau varieties that

are birational to finite quotients of Fermat varieties. Their definition involves a

matrix A and a certain finite abelian group G, and we denote the correspond-

ing Calabi-Yau variety by ZA,G. The transpose matrix AT and the so-called

dual group GT give rise to the BHK mirror variety ZAT ,GT . In the case of

dimension 2, the surface ZA,G is a K3 surface of BHK type.

Let ZA,G be a K3 surface of BHK type, with BHK mirror ZAT ,GT . Using

work of Shioda [Shi2], Kelly shows in [Kel2] that the geometric Picard num-

ber ρ(ZA,G) of ZA,G may be expressed in terms of a certain subset of the

dual group GT . We simplify this formula significantly to show that ρ(ZA,G)

depends only upon the degree of the mirror polynomial FAT .

1. Introduction

Let k be an algebraically closed field of characteristic p ≥ 0, and let X be a

smooth projective surface defined over k. The Picard number of X is defined as

the rank of the Neron-Severi group of X:

ρ = ρ(X) = rankZ NS(X),

where NS(X) denotes the group of divisors on X modulo algebraic equivalence.

The Picard number is a fundamental invariant of a surface, but in practice the

determination of ρ(X) can be difficult for a given surface X.

The case of K3 surfaces illustrates this point well, where one has 1 ≤ ρ ≤ 20

in characteristic 0 and 1 ≤ ρ ≤ 22 in positive characteristic. For instance, when

ρ(X) ≥ 5, one knows that X has an elliptic fibration, and when ρ(X) ≥ 12, then

such a fibration exists having a section (see for instance [Huy, §11.1]). If ρ(X) ≥
17, one may often deduce the existence of a nontrivial algebraic correspondence

between X and an abelian surface [Mor]. K3 surfaces satisfying ρ = 22 (in positive

characteristic) fall into the highly interesting class of supersingular K3 surfaces.

This small selection of facts shows the importance of determining the Picard number

of a K3 surface, but this task is usually far from straightforward. This may be

inferred, for instance, from van Luijk’s construction [vL] of the first explicit example

of a K3 surface over Q with ρ = 1, a relatively recent feat within the much longer

history of K3 surfaces.
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In [Shi2], Shioda identifies a special class of surfaces for which the Picard number

may be determined in a combinatorial manner. Any one of these surfaces X is

birational to the quotient of a Fermat surface Xd
0 +Xd

1 +Xd
2 +Xd

3 = 0 by a finite

group Γ, and this allows Shioda to obtain a formula of the form

ρ(X) = b2(X)−#(Id(p) ∩H),

where b2(X) is the second Betti number of X, H is a certain subgroup of (Z/d)4

(determined by Γ), and Id(p) is a certain subset of (Z/d)4 (see §5). In this sense, the

formula for ρ(X) in [Shi2] is elementary and computable; however, the nontrivial

amount of calculation required generally makes it difficult to predict the value of

ρ(X) without completing the full computation.

One interesting class of surfaces to which Shioda’s formulas apply are K3 surfaces

of BHK type. These are the 2-dimensional examples of special types of Calabi-Yau

varieties for which a notion of mirror symmetry was initiated by Berglund–Hübsch

[BH2], and extended by Berglund–Henningson [BH1] and Krawitz [Kra]. Roughly

speaking, a K3 surface of BHK type is determined by what we shall call an adequate

BHK pair (A,G), where A = (Aij) is a 4-by-4 matrix of nonnegative integers and

G is a subgroup of (Z/d)4 (for some d ≥ 1 determined by A); see §2 and §3 for the

precise requirements on A and G. The matrix A yields a polynomial of the form

(1.1) FA =

3∑
i=0

xAi0
0 xAi1

1 xAi2
2 xAi3

3 ,

one which turns out to be quasihomogeneous of some degree h and weights q =

(q0, q1, q2, q3). This will define a hypersurface XA of degree h in the weighted

projective space P3(q), and its minimal resolution X̃A will be a K3 surface. The

group G yields a group of symplectic automorphisms on X̃A, and hence the minimal

resolution of the quotient X̃A/G is again a K3 surface ZA,G; the latter surface is

called a K3 surface of BHK type.

The BHK mirror construction starts by forming the transpose AT , which in

turn yields a second polynomial FAT . From G, one may also form the so-called

dual group GT ⊆ (Z/d)4 (see §4). When (AT , GT ) is another adequate BHK pair,

it gives rise to the K3 surface ZAT ,GT , which is the BHK mirror surface of ZA,G.

In [Kel2], Kelly applies Shioda’s formula to the BHK construction to reveal

a striking relationship between the Picard numbers of the K3 surfaces ZA,G and

ZAT ,GT , one that adds weight to the “mirror” adjective:

Theorem 1.1 (Kelly). Let ZA,G and ZAT ,GT be K3 surfaces of BHK type that are

BHK mirrors. Their Picard numbers are given by

ρ(ZA,G) = 22−#(Id(p) ∩GT )

ρ(ZAT ,GT ) = 22−#(Id(p) ∩G).

Yet despite the appealing nature of the relation in Theorem 1.1, the precise

values of ρ(ZA,G) and ρ(ZAT ,GT ) can still be difficult to anticipate without a fair

amount of calculation. One arithmetically interesting demonstration of this is given

by the following question: Noting that FA has integral coefficients, if we fix the pair
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(A,G) and allow the prime p to vary, how does ρ(ZA,G) vary? As an intriguing

example at the end of [Kel2] suggests, the answer is not obvious, but nevertheless

appears to be simpler than one might expect from Shioda’s formula.

Our main result simplifies the formulas in Theorem 1.1 and also answers the

question of how the Picard number of ZA,G varies with p:

Theorem 1.2. Let ZA,G and ZAT ,GT be K3 surfaces of BHK type that are BHK

mirrors. Let h (resp. hT ) denote the degree of the quasihomogeneous polynomial

FA (resp. FAT ). Over the algebraically closed field k, the Picard numbers of these

surfaces are given as follows:

(1) If char k = 0 then

ρ(ZA,G) = 22− φ(hT )

ρ(ZAT ,GT ) = 22− φ(h),

where φ denotes Euler’s totient function.

(2) If char k = p > 0 with p - d then

ρ(ZA,G) =

{
22 if p` ≡ −1 (mod hT ) for some `

22− φ(hT ) if p` 6≡ −1 (mod hT ) for all `

ρ(ZAT ,GT ) =

{
22 if p` ≡ −1 (mod h) for some `

22− φ(h) if p` 6≡ −1 (mod h) for all `

In particular, we have the following result:

Corollary 1.3. The Picard number of ZA,G is independent of G.

We note that, in characteristic 0, this corollary is immediate from a result of

Inose [Ino, Cor. 1.2], which says that if one has complex K3 surfaces X,Y and a

rational map π : X → Y , then ρ(X) = ρ(Y ). Our proof will be independent of this

fact, but see Remark 8.3 for more discussion of this result of Inose.

Another consequence is that the possible values of Picard numbers of K3 surfaces

of BHK type are constrained only by the values of the φ-function:

Corollary 1.4. In characteristic 0, the (geometric) Picard number of a K3 surface

of BHK type may equal any even integer between 2 and 20, with the exception of 8.

Proof. Given that the Picard number of a K3 surface in characteristic 0 lies between

1 and 20, part (1) of Theorem 1.2 says it suffices to find BHK mirror surfaces ZA,G

and ZAT ,GT such that φ(hT ) ∈ {2, 4, 6, . . . , 20} \ {14}. In Table 3 of §9, we have

listed one explicit example for each case. On the other hand, one may show that

φ(k) 6= 14 for every positive integer k, so the Picard number of a K3 surface of

BHK type can never equal 8. �

We note that, by part (2) of Theorem 1.2, the possibilities for the Picard number

in characteristic p > 0 are the same as those listed in the Corollary, along with the

additional possibility of having Picard number 22.

The proof of Theorem 1.2 proceeds by an analysis of the set Id(p)∩G ⊆ (Z/d)4,

for a given BHK pair (A,G). For a certain subset Ad ⊆ (Z/d)4 (see §5), the



4 CHRISTOPHER LYONS AND BORA OLCKEN

multiplicative group (Z/d)× acts upon Ad ∩ G by coordinatewise multiplication,

and one may recast Id(p) ∩G ⊆ (Z/d)4 as the union of those orbits of this action

which possess a certain property. (This property of the orbits is described in terms

of certain special elements in Ad; see §7. We note that this idea is also implicit in

[Shi2, Cor. 2].) On the other hand, Id(p) ∩G also has a Hodge theoretic meaning,

and in the context of K3 surfaces this allows one to deduce that there is at most

one orbit having the aforementioned property (see Proposition 6.2). An explicit

description of this one orbit then gives the theorem.

In the final section of the paper, we revisit the example from the end of [Kel2],

compute the Picard numbers of K3 surfaces of BHK type arising from quartic

surfaces and double sextics, and give explicit examples that verify Corollary 1.4.
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2. BHK pairs

In this section we fix p to be either 0 or a (positive) prime integer.

The concepts discussed in this section might best be described as algebraic or

combinatorial, the culmination being the notion of BHK pair in Definition 2.5. But

our primary motivation for these concepts will be their application in the geometric

setting discussed in the next section. In particular, the notion of an adequate BHK

pair in Definition 3.1 will be a further refinement that incorporates additional

desirable properties (such as mildness of certain singularities).

Definition 2.1. Let A = (Aij)0≤i,j≤3 ∈ M4×4(Z). We will say A is a weighted

Delsarte matrix if it satisfies all of the following:

(1) All entries of A are nonnegative

(2) Each column has at least one zero

(3) We have p - det(A) (and in particular det(A) 6= 0)

(4) The vector A−1(1, 1, 1, 1)T consists of positive entries

Now let k denote an algebraically closed field of characteristic p. Associated to

A, we define the polynomial

FA =

3∑
i=0

3∏
j=0

x
Aij

j =

3∑
i=0

xAi0
0 xAi1

1 xAi2
2 xAi3

3 .
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Notice that if λ ∈ k× and n = (n0, n1, n2, n3) ∈ Z4, then

FA(λn0x0, λ
n1x1, λ

n2x2, λ
n3x3) =

3∑
i=0

3∏
j=0

(λnjxj)
Aij(2.1)

=

3∑
i=0

λ∑3
j=0 Aijnj

3∏
j=0

x
Aij

j

(2.2)

=

3∑
i=0

λ(AnT )i

3∏
j=0

x
Aij

j

 .(2.3)

As a first consequence of this, let the vector in (4) be given by

(2.4) A−1(1, 1, 1, 1)T =
(q0

h
,
q1

h
,
q2

h
,
q3

h

)
,

where each qi and h are (positive) integers and gcd(q0, q1, q2, q3) = 1. Putting

q = (q0, q1, q2, q3), we have AqT = (h, h, h, h)T and thus by (2.3) the polynomial

FA satisfies

(2.5) FA(λq0x0, λ
q1x1, λ

q2x2, λ
q3x3) = λhFA(x0, x1, x2, x3)

for all λ ∈ k×. This says that FA is quasihomogeneous of degree h and weight

system q = (q0, q1, q2, q3).

Definition 2.2. We will say that the weighted Delsarte matrix A satisfies the

Calabi-Yau requirement if (with notation as above) we have h =
∑3

i=0 qi.

Remark 2.3. We note by (2.4) that A satisfies the Calabi-Yau requirement if and

only if the entries of A−1 sum to 1.

For the rest of this section, we assume that we are working with weighted a

Delsarte matrix A that also satisfies the Calabi-Yau requirement.

Next consider the following subgroup of (k×)4:

Aut(FA) =
{

(λ0, λ1, λ2, λ3) ∈ (k×)4 | F (λ0x0, λ1x1, λ2x2, λ3x3) = FA(x0, x1, x2, x3)
}
.

One may use (3) to show that Aut(FA) is a subgroup of µ4
d, where d is the smallest

positive integer such that the matrix

(2.6) B = dA−1

has integer entries and µd denotes the group of dth roots of unity in k. Moreover,

one may show that # Aut(FA) = |det(A)|.

Lemma 2.4. We have h | d, d | det(A), and det(A) | d4. In particular, the primes

dividing d and det(A) are the same.

Proof. One may characterize h as the positive generator of the following ideal in Z:{
m ∈ Z | mA−1(1, 1, 1, 1)T ∈ Z4

}
.

By its definition in (2.6), d belongs to this ideal and hence we conclude h | d.

Likewise, we may characterize d as the positive generator of the ideal{
m ∈ Z | mA−1 ∈M4×4(Z)

}
,
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and as det(A)A−1 is the adjugate matrix of A, we must have d | det(A). Finally,

as Aut(FA) has order |det(A)|, it must divide the order of the group µ4
d. The

concluding remark in the statement of the lemma follows from the fact that d |
det(A) and det(A) | d4. �

Fix a primitive dth root of unity ζ ∈ k. For any a = (a0, a1, a2, a3) ∈ (Z/d)4, we

find by (2.3) that

(ζa0 , ζa1 , ζa2 , ζa3) ∈ Aut(FA) ⇐⇒ AaT = 0T in Z/d.

Due to this, we will typically (but not always) use this additive notation:

(ζa0 , ζa1 , ζa2 , ζa3) ∈ µ4
d ←→ a = (a0, a1, a2, a3) ∈ (Z/d)4.

To reduce ambiguity between these notations, we will also use Greek variables for

the multiplicative notation and Roman variables for the additive notation.

We now identify two subgroups of Aut(FA). First (in our additive notation) let

jA =
d

h
q =

(
q0d

h
,
q1d

h
,
q2d

h
,
q3d

h

)
.

By (2.5), we see jA ∈ Aut(FA), and we denote by JFA
= 〈jA〉 the cyclic subgroup

that it generates. Second, define

SL(FA) =
{

a ∈ Aut(FA)
∣∣∣ 3∑

i=0

ai = 0
}
.

(In the multiplicative notation, an element (λ0, λ1, λ2, λ3) ∈ Aut(FA) belongs to

SL(FA) precisely when
∏3

i=0 λi = 1; by viewing (λ0, λ1, λ2, λ3) as a diagonal matrix,

one better comprehends this widely-used notation for this subgroup of Aut(FA).)

The Calabi-Yau condition on A implies that JFA
⊆ SL(FA).

Definition 2.5. A BHK pair will be a pair (A,G) such that:

(1) A is a weighted Delsarte matrix satisfying the Calabi-Yau condition.

(2) G is a subgroup satisfying JFA
⊆ G ⊆ SL(FA).

3. BHK surfaces of K3 type

From these algebraic ideas, we now pass to a more geometric setting, by using a

BHK pair to form a hypersurface in weighted projective space. A standard reference

for weighted projective spaces is [Dol].

Recall that k is a field of characteristic p ≥ 0. We let (A,G) denote a BHK pair

and assume the following further conditions:

• The weight system q = (q0, q1, q2, q3) satisfies gcd(qi, qj , q`) = 1 whenever

0 ≤ i < j < ` ≤ 3.

• p - qi for all i.

• p - d.

The polynomial FA defines a hypersurface XA (called a weighted Delsarte surface)

of degree h in the weighted projective space P3(q) = P3(q0, q1, q2, q3), and XA has

at most cyclic quotient singularities. We assume that XA is:
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• quasi-smooth, meaning that the affine cone over XA has the origin as its

only singular point, and

• well-formed, meaning that the intersection of the (one-dimensional) singular

locus of P3(q) with XA is zero-dimensional or empty.

Due to this, and the fact that A satisfies the Calabi-Yau requirement, the minimal

resolution X̃A will be a K3 surface (see [Got]).

The group Aut(FA) acts upon points of XA via

(λ0, λ1, λ2, λ3) · (x0 : x1 : x2 : x3) = (λ0x0 : λ1x1 : λ2x2 : λ3x3),

and this extends to an action upon X̃A. Note that the action of the subgroup JFA

is trivial. Moreover one may show (see [ABS, Prop. 1]) that SL(FA) is precisely

the subgroup of elements in Aut(FA) that act symplectically upon X̃A, i.e., that

act trivially on the canonical bundle of X̃A. Hence the group G, which satisfies

JFA
⊆ G ⊆ SL(FA), also acts symplectically on X̃A. Since p - d, the minimal

resolution ZA,G of the quotient surface X̃A/G will again be a K3 surface; see [Got]

for more details.

Hence, under certain conditions, a BHK pair (A,G) gives rise to the correspond-

ing geometric object ZA,G. We summarize all of this with the following:

Definition 3.1. Let (A,G) be a BHK pair such that gcd(qi, qj , q`) = 1 for any

three distinct weights in q, p - qi for all i, and p - d. If the hypersurface XA in

P3(q) is quasi-smooth and well-formed, we will call (A,G) an adequate BHK pair.

Furthermore, if ZA,G denotes the K3 surface obtained as the minimal resolution of

X̃A/G, then ZA,G is called a K3 surface of BHK type.

Lemma 3.2. Suppose that the BHK pair (A,G) is an adequate BHK pair over a

field of characteristic p > 0. Then the same is true over a field of characteristic 0.

Proof. Put briefly, this follows from the fact that “well-formed” and “quasi-smooth”

are open conditions. To see this, notice that FA ∈ Z[x0, x1, x2, x3] cuts out a

codimension one subscheme X′A ⊆ SpecZ[x0, x1, x2, x3]. Likewise, if Z[x0, x1, x2, x3]

is graded so that each xi has weight qi, then FA cuts out the codimension one

subscheme XA ⊆ P3
Z(q) = ProjZ[x0, x1, x2, x3]. Note that X′A is the affine cone

over XA.

Now assume that (A,G) is adequate over a field of characteristic p > 0, and

hence gives rise to the K3 surface ZA,G over this field. Let Y ⊆ X′A denote the

singular locus of X′A. The fact that ZA,G is quasi-smooth means that the fiber

of Y → SpecZ over p is zero-dimensional. Hence by semi-continuity, the same is

true of the generic fiber; in other words, (A,G) defines a quasi-smooth surface in

characteristic 0.

Likewise, if Z ⊆ XA denotes the intersection of XA with the singular locus of

P3
Z(q), the hypothesis of the lemma implies that the fiber of Z → SpecZ over p is

either zero-dimensional or empty, and so the same must be true of the generic fiber.

Hence (A,G) defines a well-formed surface in characteristic zero as well. �

Remark 3.3. While they will not play a significant role in the proof of Theorem

8.2, there are two other facets of an adequate BHK pair (A,G) worth noting here.



8 CHRISTOPHER LYONS AND BORA OLCKEN

First, results of Kreuzer and Skarke [KS, Theorem 1] classify those weighted

Delsarte matrices A such that the corresponding hypersurface XA will be quasi-

smooth in characteristic 0. Their classification shows XA is quasi-smooth if and

only if the polynomial FA is a direct sum of so-called atomic types, of which there

are three:

Fermat: ye

Loop: ye00 y1 + ye11 y2 + · · ·+ yekk y0

Chain: ye00 y1 + ye11 y2 + · · ·+ y
ek−1

k−1 yk + yekk

Moreover, one may show that their results also hold in characteristic p under the

assumption that p - det(A) (or equivalently, by Lemma 2.4, that p - d): If A defines

a quasi-smooth hypersurface XA in characteristic p, then the proof of Lemma 3.2

shows the same is true in characteristic 0, and therefore FA must be a direct sum of

atomic types; for the converse, it is enough to assume that FA consists of a single

atomic type, and then one checks quasi-smoothness for each of the Fermat, loop,

and chain cases under the assumption that p - det(A).

The second point is that, given the assumptions made about the weight system

q = (q0, q1, q2, q3) at the beginning of this section, q will belong to one of 95 possible

weight systems (counted up to reordering the qi); see [Rei, Yon]. Taken together

with the Kreuzer–Skarke classification, this significantly restricts the possibilities

for the matrix A in an adequate BHK pair. (On the other hand, their number is still

quite large, as demonstrated by the partial lists of examples in [ABS, CLPS, CP].)

4. BHK mirrors

Let (A,G) be an adequate BHK pair. Since XA is then quasi-smooth, the clas-

sification result of Kreuzer and Skarke mentioned in Remark 3.3 implies that its

transpose AT is also a weighted Delsarte matrix. Furthermore, Remark 2.3 shows

that AT also satisfies the Calabi-Yau requirement. Just as before, one obtains from

AT a polynomial FAT , which will be quasihomogeneous of some degree hT and

weight system qT . (We note that, in general, the degree and weight system of FAT

will differ from that of FA.) Just as with FA, one may define the groups

JFAT
⊆ SL(FAT ) ⊆ Aut(FAT ).

The group Aut(FAT ) is a subgroup of µ4
d (for the same value of d as in §2) and

again we have # Aut(FAT ) = |det(A)|. Alternatively, in the additive notation, we

may view Aut(FAT ) as the following subgroup of (Z/d)4:

Aut(FAT ) =
{
a ∈ (Z/d)4 | aA = (ATaT )T = 0

}
Let us now use the additive notation to define a pairing

〈·, ·〉 : Aut(FAT )×Aut(FA)→ Z/d2.

This pairing is defined by the rule

〈a,b〉 = ãAb̃T ,

where ã, b̃ are any lifts of a,b to the group (Z/d2)4; one may verify that 〈a,b〉 is

independent of the choices of these lifts, by using the fact that aA = 0 and AbT = 0
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in (Z/d)4. This pairing is Z/d2-bilinear, if one regards g ∈ Z/d2 as acting upon

each of the factors Aut(FA) and Aut(FAT ) via scalar multiplication after applying

the reduction map Z/d2 → Z/d.

From the adequate BHK pair (A,G) above, one may now define the dual group

GT as

GT = {a ∈ Aut(FAT ) | 〈a,b〉 = 0 for all b ∈ G} .
One may check that this is equivalent to the definition of GT in [Kel2]. (Also see

[ABS, §3] for a discussion of several equivalent definitions of GT .) Some useful facts

about this construction are that (GT )T = G, Aut(FA)T = {0}, JT
FA

= SL(FAT ),

and JFAT
⊆ GT ⊆ SL(FAT ). (Note that the latter two facts require the Calabi-Yau

assumption and the fact that JFA
⊆ G ⊆ SL(FA).)

From the discussion above, the pair (AT , GT ) will automatically be a BHK pair,

and one may also deduce (using the Kreuzer–Skarke classification) that XAT will be

quasi-smooth. Hence (AT , GT ) will be an adequate BHK pair if and only if p - qi,T
(where qT = (q0,T , q1,T , q2,T , q3,T )) and XAT is also well-formed.

Definition 4.1. Let (A,G) be an adequate BHK pair. If the BHK pair (AT , GT )

is also an adequate BHK pair, then we will call it the BHK mirror pair of (A,G).

Furthermore, we will say that the K3 surface ZAT ,GT is the BHK mirror surface of

the surface ZA,G.

5. Picard numbers of K3 surfaces of BHK type

Let (A,G) be a BHK pair. We will define several subsets of the additive group

(Z/d)4:

Md =

{
a = (a0, a1, a2, a3) ∈ (Z/d)4

∣∣∣ 3∑
i=0

ai = 0

}
(5.1)

Ad = {a ∈Md | ai 6= 0 for all 0 ≤ i ≤ 3}(5.2)

Then Md is a subgroup of (Z/d)4, while Ad is merely a subset that is closed under

scalar multiplication by (Z/d)×. We define the following function upon Ad:

Definition 5.1. The age of a = (a0, a1, a2, a3) ∈ Ad is the integer

S(a) =

3∑
i=0

〈
âi
d

〉
,

where âi ∈ Z is any lift of ai from Z/d to Z, and 〈x〉 = x−bxc denotes the fractional

part of x ∈ R.

Remark 5.2. In the literature surrounding BHK mirror symmetry, the concept

of age is typically defined for any element of Aut(FA) (and is not necessarily an

integer). The notion is also useful in other contexts (for instance, see [IR]). For our

purposes, we will only need to consider it for elements in Aut(FA) ∩ Ad.

The following properties of S(a) are straightforward to verify:

Proposition 5.3. For a ∈ Ad we have:
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(1) S(a) ∈ {1, 2, 3}
(2) S(−a) = 4− S(a)

Now define

Bd(0) =
{
a ∈ Ad | S(ta) = 2 for all t ∈ (Z/d)×

}
.

If p > 0 is a prime such that p - d, let f denote the order of the (congruence class

of) p in the multiplicative group (Z/d)×. We also define

Bd(p) =
{

a ∈ Ad

∣∣∣ f−1∑
j=0

S(tpja) = 2 for all t ∈ (Z/d)×
}
.

Finally, for p = 0 or a prime p - d, let

Id(p) = Ad \Bd(p).

The main theorem of [Kel2] is:

Theorem 5.4 (Kelly). Let (A,G) and (AT , GT ) be BHK mirror pairs. Over a field

of characteristic p = 0 or p - d, the geometric Picard numbers of the BHK mirror

surfaces ZA,G and ZAT ,GT are given by

ρ(ZA,G) = 22−#(Id(p) ∩GT )

ρ(ZAT ,GT ) = 22−#(Id(p) ∩G)

6. Quotients of Fermat surfaces

In this section, all varieties will be defined over a field of characteristic 0. We

will let

Yd = V (Xd
0 +Xd

1 +Xd
2 +Xd

3 )

denote the Fermat surface of degree d in P3.

The group µ4
d acts upon Yd by multiplication of each coordinate:

(λ0, λ1, λ2, λ3) · (X0 : X1 : X2 : X3) = (λ0X0 : λ1X1 : λ2X2 : λ3X3).

Letting ∆ ↪→ µ4
d denote the diagonal subgroup, we obtain in this way an injection

µ4
d/∆ ↪→ Aut(Yd). By functoriality we obtain a representation of µ4

d/∆ upon the

singular cohomology group H2(Yd,Q).

We note that the group Hom(µ4
d/∆,C×) of characters of µ4

d/∆ may be identified

with the group Md defined in (5.1). In particular,

a = (a0, a1, a2, a3) ∈Md =⇒ a
((
λ0, λ1, λ2, λ3)∆

)
=
∏
i

λai
i .

Hence upon extending scalars to C, we obtain a decomposition of the middle sin-

gular cohomology of Yd:

H2(Yd,C) =
⊕
a∈Md

V (a),
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where µ4
d/∆ acts via the character a on V (a). Recalling the subset Ad ⊆ Md in

(5.2), one can show (see [Shi1], for instance) that

dimC V (a) =

{
1 if a = 0 or a ∈ Ad

0 otherwise,

so that H2(Yd,C) becomes the following direct sum of one-dimensional spaces:

H2(Yd,C) = V (0)⊕
⊕
a∈Ad

V (a).

Moreover, as this decomposition arises from a group of automorphisms of Yd, each

of the subspaces V (a) is a Hodge structure (over C) and one can ask about its

Hodge type.

Proposition 6.1. If a ∈ Ad, then V (a) ⊆ H2−q,q(Yd,C) if and only if S(a) = q+1.

Furthermore V (0) ⊆ H1,1(Yd,C).

Proof. See [Shi1]. �

Now let (A,G) be an adequate BHK pair. In [Kel1, Cor. 3.2], the K3 surface ZA,G

is shown to be birational to the quotient Yd/Γ, for a particular subgroup Γ ⊆ µ4
d

(whose precise definition will not be needed here). Thus we have an isomorphism

of Hodge structures

H2(ZA,G,Q) ' E⊕H2(Yd,Q)Γ,

where E is generated by the classes of some (−1)-curves on ZA,G. Tensoring with

C, we obtain

H2(ZA,G,C) ' EC ⊕H2(Yd,C)Γ

= EC ⊕

(
V (0)⊕

⊕
a∈Ad

V (a)

)Γ

= EC ⊕ V (0)⊕
⊕

a∈Ad∩L(Γ)

V (a),

where

L(Γ) = {a ∈Md | a(γ) = 1 for all γ ∈ Γ} .

But in [Kel2, Prop. 3], Kelly shows that

L(Γ) = GT ∩Md,

where GT is the dual group of the group G. Since Ad ⊆Md, we arrive at

H2(ZA,G,C) ' EC ⊕ V (0)⊕
⊕

a∈Ad∩GT

V (a).
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By Proposition 6.1, this also gives the following description of the Hodge decom-

position of H2(ZA,G,C):

H2,0(ZA,G,C) '
⊕

a∈Ad∩GT

S(a)=1

V (a)(6.1)

H1,1(ZA,G,C) ' EC ⊕ V (0)⊕
⊕

a∈Ad∩GT

S(a)=2

V (a)(6.2)

H0,2(ZA,G,C) '
⊕

a∈Ad∩GT

S(a)=3

V (a)(6.3)

Proposition 6.2. Let (A,G) and (AT , GT ) be BHK mirror pairs. Each of the sets

Ad ∩G and Ad ∩GT contains exactly one element of age 1.

Proof. Since ZAG
is a K3 surface, we know that dimH2,0(ZA,G,C) = 1. Hence by

(6.1), there is exactly one a ∈ Ad∩GT such that S(a) = 1. By symmetric reasoning

we have

H2,0(ZAT ,GT ,C) '
⊕

a∈Ad∩G
S(a)=1

V (a),

from which we conclude that Ad ∩G also has exactly one element of age 1. �

7. Description in terms of orbits

The results in this section are of a strictly combinatorially nature. Specifically,

we will work with an integer d ≥ 1, a subgroup H ⊆ (Z/d)4, and primes p that do

not divide d. Our goal is to analyze the structure of the sets Id(0)∩H and Id(p)∩H
under an assumption on H inspired by Proposition 6.2. The results obtained will

be applied to the geometric setting in the next section.

We let Ud = (Z/d)×. This group acts upon (Z/d)4 by multiplication, and it

preserves the subset Ad and any subgroup of (Z/d)4. In this section, we fix some

subgroup H ⊆ (Z/d)4. Hence Ud acts upon the set Ad ∩H, and we let

ΦH = (Ad ∩H)/Ud

denote the collection of orbits of this action. For a prime p - d, let 〈p〉 ⊆ Ud denote

the subgroup generated by (the congruence class of) p. Since the subgroup 〈p〉 will

of course preserve any orbit O ∈ ΦH of the larger group Ud, we make another piece

of notation: Let

ΦH(p,O) = O/ 〈p〉

denote the collection of orbits of 〈p〉 acting upon a Ud-orbit O. Thus we have

decomposed each O ∈ ΦH as the disjoint union

O =
∐

T∈ΦH(p,O)

T
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and decomposed Ad ∩H as

Ad ∩H =
∐
O∈ΦH

O =
∐
O∈ΦH

 ∐
T∈ΦH(p,O)

T

 .

We now restate the definitions of the sets Bd(0) ∩H and Id(0) ∩H in terms of

the orbits ΦH . First note that if a ∈ Ad ∩H, then

a ∈ Bd(0) ∩H ⇐⇒ S(ta) = 2 for all t ∈ Ud

⇐⇒ S(b) = 2 for all b ∈ Ud · a,

where Ud · a denotes the Ud-orbit of a. Therefore Bd(0) ∩H is a union of certain

orbits in Φ, namely those O ∈ ΦH that only contain elements of age 2, i.e,

Bd(0) ∩H =
∐
{O ∈ ΦH | S(a) = 2 for all a ∈ O} .

Therefore, taking the complement of Bd(0) ∩H inside Ad ∩H, we obtain

Id(0) ∩H =
∐
{O ∈ ΦH | S(a) 6= 2 for some a ∈ O} .

But if S(a) 6= 2, then by Proposition 5.3, either S(a) = 1 or S(−a) = 1. Therefore,

we may alternatively write

(7.1) Id(0) ∩H =
∐
{O ∈ ΦH | S(a) = 1 for some a ∈ O} .

In words, this says that Id(0) ∩H is the union of those Ud-orbits O that contain

at least one element of age 1.

From (7.1), we can deduce:

Proposition 7.1. Suppose that Ad ∩H contains exactly one element a0 of age 1.

If h denotes the order of a0 in (Z/d)4, then

Id(0) ∩H = {na0 | 1 ≤ n ≤ h, (n, h) = 1}

is a set of cardinality φ(h), where φ denotes Euler’s totient function.

Proof. By (7.1), Id(0)∩H is equal to the orbit of a0 under Ud. That is, Id(0)∩H =

Rd where

Rd = {ma0 | 1 ≤ m ≤ d, (m, d) = 1} .
Letting Rh = {na0 | 1 ≤ n ≤ h, (n, h) = 1}, we must show that Rd = Rh.

If ma0 ∈ Rd, let m ≡ m0 (mod h), where 1 ≤ m0 ≤ h. Since h | d, we have

(m0, h) = 1, and so ma0 = m0a0 ∈ Rh. Thus Rd ⊆ Rh.

For the opposite inclusion, take na0 ∈ Rh. The main obstacle to concluding that

na0 ∈ Rd is that we might have (n, h) = 1 but (n, d) > 1. If the primes dividing

h and d are identical, this will not happen; so assuming otherwise, suppose that

Q > 1 denotes the product of all primes that divide d but not h. By the Chinese

Remainder Theorem, there exists an integer N satisfying 1 ≤ N ≤ hQ ≤ d, N ≡ n
(mod h) and N ≡ 1 (mod Q). Then N will be not be divisible by any primes

dividing d, and thus na0 = Na0 ∈ Rd.

Finally, we note that all elements of Rh are distinct since the order of a0 is h, so

it has cardinality φ(h). �
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Likewise, we may recast Bd(p)∩H and Id(p)∩H in terms of the orbits ΦH(p).

Recalling that f is the order of p in Ud, we note that if a ∈ Ad ∩H then

a ∈ Bd(p) ∩H ⇐⇒
f−1∑
j=0

S(tpja) = 2f for all t ∈ Ud

⇐⇒
f−1∑
j=0

S(pjb) = 2f for all b ∈ Ud · a.

Now the sum
∑f−1

j=0 S(pjb) consists of f terms, so we have

f−1∑
j=0

S(pjb) = 2f ⇐⇒
f−1∑
j=0

(S(pjb)− 2) = 0.

The quantity S(pjb) − 2 takes values in {−1, 0, 1} by Proposition 5.3, and so the

equation on the right side is true if and only if there are an equal number of

occurrences of 1 and −1 in the sum. That is, we have
∑f−1

j=0 S(pjb) = 2f if and

only if 1 and 3 appear in equal numbers in the sequence

S(b), S(pb), . . . , S(pf−1b).

Finally, we note that sequence

(7.2) b, pb, . . . , pf−1b

is simply the orbit of b under 〈p〉, but possibly repeated a certain number of times.

(More precisely, if the 〈p〉-orbit of b has size f ′, then f ′ | f and the sequence (7.2)

repeats this orbit f/f ′ times.) Hence we conclude

a ∈ Bd(p) ∩H ⇐⇒
f−1∑
j=0

S(pjb) = 2f for all b ∈ Ud · a

⇐⇒ #
(
(〈p〉 · b) ∩ S−1(1)

)
= #

(
(〈p〉 · b) ∩ S−1(3)

)
for all b ∈ Ud · a

As with Bd(0) ∩ H, we see that Bd(p) ∩ H is a union of certain orbits in ΦH .

Looking at the preceding equivalence, we can state this precisely as:

Bd(p)∩H =
∐{

O ∈ ΦH | #(T ∩ S−1(1)) = #(T ∩ S−1(3)) for all T ∈ ΦH(p,O)
}
.

Therefore we have

(7.3)

Id(p)∩H =
∐{

O ∈ ΦH | #(T ∩ S−1(1)) 6= #(T ∩ S−1(3)) for some T ∈ ΦH(p,O)
}
.

In words, Id(p) ∩ H is the union of those Ud-orbits O that contain at least one

〈p〉-orbit T having unequal numbers of elements of age 1 and 3.

Proposition 7.2. Suppose that Ad ∩H contains exactly one element a0 of age 1.

If h denotes the order of a0 in (Z/d)4, then we have the following two possibilities

for Id(p) ∩H:

(1) If p` ≡ −1 (mod h) for some `, then Id(p) ∩H = ∅.
(2) If p` 6≡ −1 (mod h) for all `, then Id(p) ∩H = Id(0) ∩H.
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Proof. By Proposition 5.3, the hypothesis implies that −a0 is the only element of

Ad ∩H of age 3. Hence Ud · a0 is the only orbit in ΦH that doesn’t consist entirely

of elements of age 2. So by (7.3), Id(p) ∩H can only be empty or equal to Ud · a0,

which in turn is equal to Id(0) ∩H by Proposition 7.1.

If we assume that p` ≡ −1 (mod h), we find that 〈p〉 · a0 contains one element

of age 1 and one element of age 3, and this gives the first statement. But assuming

p` 6≡ −1 (mod h) for all k, it follows that the 〈p〉 · a0 contains one element of age 1

and no elements of age 3; hence Ud ·a0 is contained in Id(p)∩H, giving the second

statement. �

8. Picard numbers of K3 surfaces of BHK type

Let (A,G) be an adequate BHK pair, and let d be defined as in (2.6). As

before, this defines a polynomial FA that is quasihomogeneous of degree h with

weight system q = (q0, q1, q2, q3). By assumption, the group G satisfies JFA
⊆ G ⊆

SL(FA), and thus G contains the element

jA =
d

h
q =

(
q0d

h
,
q1d

h
,
q2d

h
,
q3d

h

)
,

which is a generator of JFA
. Now

(8.1) S(jA) =

3∑
i=0

〈
qid/h

d

〉
=

3∑
i=0

〈qi
h

〉
=

3∑
i=0

qi
h

= 1

due to the Calabi-Yau requirement
∑

i qi = h.

Lemma 8.1. Let (A,G) and (AT , GT ) be BHK mirror pairs. Then jA is the only

element of age 1 in the set Ad ∩GT , where GT is the dual group of G.

Proof. By Lemma 3.2, we know that (A,G) gives rise to the K3 surface in char-

acteristic 0 that we have denoted by ZA,G. Applying (8.1) and Proposition 6.2 to

this surface, we obtain the desired conclusion. �

Our main result now follows:

Theorem 8.2. Let (A,G) be an adequate BHK pair and (AT , GT ) its BHK mirror

pair. Let h (resp. hT ) denote the degree of the quasihomogeneous polynomial FA

(resp. FAT ). Over the algebraically close field k, the Picard numbers of the BHK

mirror surfaces ZA,G and ZAT ,GT are given as follows:

(1) If char k = 0 then

ρ(ZA,G) = 22− φ(hT )

ρ(ZAT ,GT ) = 22− φ(h).

(2) If char k = p > 0 with p - d then

ρ(ZA,G) =

{
22 if p` ≡ −1 (mod hT ) for some `

22− φ(hT ) if p` 6≡ −1 (mod hT ) for all `

ρ(ZAT ,GT ) =

{
22 if p` ≡ −1 (mod h) for some `

22− φ(h) if p` 6≡ −1 (mod h) for all `
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Proof. Applying Lemma 8.1 to (AT , GT ), we find that jA is the only element of age

1 in G. Now the order of jA in (Z/d)4 clearly divides h, and by using the fact that

the weights qi have no nontrivial common divisor, one may deduce that its order is

exactly h. Therefore we conclude by Proposition 7.1 that

(8.2) Id(0) ∩G = {njA | 1 ≤ n ≤ h, (n, h) = 1}

has cardinality φ(h). We may apply a symmetric line of reasoning to describe the

structure of Id(0)∩GT . Combining this with Theorem 5.4 and Proposition 7.2, we

obtain the theorem. �

Remark 8.3. In [Ino, Cor. 1.2], Inose proves that if there is a rational map of

finite degree between two complex K3 surfaces, then the Picard numbers of both

K3 surfaces are equal; this implies that, in characteristic 0, the value of ρ(ZA,G)

depends only upon A and not upon G. By invoking this fact, one could reduce the

proof of part (1) of Theorem 8.2 to just proving that #(Id(0) ∩ JFA
) = φ(h), and

this in turn (by Proposition 7.1) would follow if one could establish that Ad ∩ JFA

contains exactly one element of age 1.

Given that JFA
= 〈jA〉 is determined only by the weight system q, one might

hope to prove this latter statement in a more direct, combinatorial fashion that

avoids the use of Hodge theory (which was invoked in Proposition 6.2). However,

such an approach appears to be fairly subtle. For instance, the statement does not

follow from the Calabi-Yau condition alone (see Definition (2.2)), as the example

of q = (4, 1, 1, 1), h = 7 demonstrates: Here Ad ∩ JFA
contains two elements of age

1. One possible reason for this may be related to the fact that hypersurfaces of

degree 7 in P3(4, 1, 1, 1) are not quasi-smooth (see [IF, Cor. 8.5]). Thus, in order to

prove the statement at the end of the previous paragraph, one might also need to

incorporate an assumption guaranteeing the quasi-smoothness of hypersurfaces of

degree
∑

i qi inside P3(q). But incorporating quasi-smoothness, well-formedness,

and such desirable assumptions imposes several combinatorial requirements [IF] on

q that do not indicate a clear path forward; in brief, the use of Hodge theory seems

more direct.

9. Examples

We now present some examples. The first example is drawn from [Kel2], and

the next two discuss cases of classical interest (quartic surfaces and double sextics).

The final example demonstrates Corollary 1.4 by giving one instance of a BHK

surface with each possible Picard number.

In the first example, we consider both positive characteristic and characteristic 0,

but in the later ones we only concern ourselves with characteristic 0; the interested

reader may apply part (2) of Theorem 8.2 to figure out the Picard number in

positive characteristic for these cases.
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Example 9.1. This example is taken from §4 of [Kel2]. Let

A =


2 1 0 0

0 2 1 0

0 0 6 1

0 0 0 7

 ,
so that

FA = x2
0x1 + x2

1x2 + x6
2x3 + x7

3,

which is quasihomogeneous of degree h = 7 and weights q = (2, 3, 1, 1). Thus

Aut(FA) is a group of order |det(A)| = 168, and one may show (see [Kel2]) that

SL(FA) has order 21. Since JFA
= 〈jA〉 has order h = 7, it follows that [SL(FA) :

JFA
] = 3, and thus there are only two groups G such that JFA

⊆ G ⊆ SL(FA),

namely G = JFA
and G = SL(FA).

Reading off the rows of AT , we also have

FAT = x2
0 + x0x

2
1 + x1x

6
2 + x2x

7
3,

which is quasihomogeneous of degree hT = 8 and weights qT = (4, 2, 1, 1). In this

case, JFAT
is cyclic of order 8, SL(FAT ) is cyclic of order 24, and so, depending

upon G, one either has GT = JFAT
or GT = SL(FAT ). The precise correspondence

happens to be

(JFA
)T = SL(FAT ), SL(FA)T = JFAT

,

although for the purposes of computing Picard numbers, Theorem 8.2 says that

the choice of G is irrelevant. If ZA,G and ZAT ,GT are taken to be defined over k of

characteristic zero, then the first part of the theorem gives

ρ(ZA,G) = 22− φ(hT ) = 22− φ(8) = 18

and

ρ(ZAT ,GT ) = 22− φ(h) = 22− φ(7) = 16.

Upon computing

A−1 =


1/2 −1/4 1/24 −1/168

0 1/2 −1/12 1/84

0 0 1/6 −1/42

0 0 0 1/7

 ,
we find that d = 168. If char k = p and p - d then, in this example, the assumption

p - d guarantees that p does not divide the weights in q and qT . We also note

that p - h and p - hT , since h, hT both divide d. Therefore p ≡ b (mod hT ) for

some 1 ≤ b ≤ hT such that (b, hT ) = 1. Since hT = 8, this gives p ≡ 1, 3, 5, or 7

(mod 8). Only in the case p ≡ 7 (mod 8) do we have p` ≡ −1 (mod 8) for some `.

Therefore by Theorem 8.2

ρ(ZA,G) =

{
22 if p ≡ 7 (mod 8)

18 if p ≡ 1, 3, 5 (mod 8).
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On the other hand, we have p ≡ 1, 2, 3, 4, 5, or 6 (mod 7), and so p` ≡ −1 (mod 7)

for some ` if and only if p ≡ 3, 5, 6 (mod 7). Therefore

ρ(ZAT ,GT ) =

{
22 if p ≡ 3, 5, 6 (mod 7)

16 if p ≡ 1, 2, 4 (mod 7).

This explains the observations in [Kel2, p.62].

Example 9.2 (Quartic surfaces of BHK type).

We suppose p = char(k) = 0.

A smooth hypersurface in P3 of degree 4 is a quartic surface, and is in fact a K3

surface. The surface ZA,G arising from an adequate BHK pair (A,G) with weights

q = (1, 1, 1, 1) and degree h = 4 will be the minimal resolution of a quotient of

the quartic surface XA. The main task in determining all such K3 surfaces of

BHK type is to write down the possibilities for the homogeneous polynomial FA

of degree 4, and the classification of Kreuzer and Skarke (see Remark 3.3) makes

this straightforward. Upon doing so, the resulting quasi-smooth surfaces XA in P3

will be automatically well-formed and thus smooth (given that P3 is smooth). If

the BHK pair (AT , GT ) is also adequate, then Theorem 8.2 implies that ρ(ZA,G)

depends only upon A and not upon G.

Recall that the Kreuzer–Skarke classification dictates that FA must be a sum

of the three atomic types: Fermat, loop, and chain. When FA is consists only of

Fermat and loop types, the mirror polynomial FAT will be essentially the same as

FA; more precisely, FA and FAT will be equal up to a permutation of the variables.

In such a case, the surfaces XA and XAT both live in P3 and are isomorphic; in

particular, the degree of the mirror polynomial will be hT = 4 and thus

ρ(ZA,G) = ρ(XA) = 22− φ(4) = 20

for any G. On the other hand, when the chain atomic type is included, more

variation appears. In such cases, one may check that (AT , GT ) is adequate (which

amounts to verifying the necessary conditions on the weight system qT and that

XAT is well-formed) and then apply Theorem 8.2 to compute ρ(ZA,G).

The results are summarized in Table 1; for ease of reading, the variables x, y, z, w

are used in place of x0, . . . , x3. The polynomial FA appears in the second column,

the weights (arranged in decreasing order) and degree of the mirror polynomial

FAT make up the third column, and the fourth column gives ρ(ZA,G) = 22−φ(hT ).

Note that the polynomials in rows 1–5 are sums of Fermat and loop atomic types,

while those in rows 6–10 have at least one summand of chain type.

Remark 9.3. Polynomials FA in distinct rows of Table 1 may in fact yield isomorphic

surfaces XA over k. As one example, the following shows that the polynomials in
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Table 1. Picard numbers of quartic surfaces of BHK type

FA (qT;hT ) ρ(ZA,G)

1 x4 + y4 + z4 + w4 (1, 1, 1, 1; 4) 20

2 x4 + y4 + z3w + w3z (1, 1, 1, 1; 4) 20

3 x4 + y3z + z3w + w3y (1, 1, 1, 1; 4) 20

4 x3y + y3x+ z3w + w3z (1, 1, 1, 1; 4) 20

5 x3y + y3z + z3w + w3x (1, 1, 1, 1; 4) 20

6 x3y + y4 + z3w + w4 (2, 2, 1, 1; 6) 20

7 x4 + y4 + z3w + w4 (4, 3, 3, 2; 12) 18

8 x3y + y3x+ z3w + w4 (4, 3, 3, 2; 12) 18

9 x4 + y3z + z3w + w4 (12, 9, 8, 7; 36) 10

10 x3y + y3z + z3w + w4 (9, 7, 6, 5; 27) 4

rows 1 and 2 yield isomorphic surfaces:

x4 + y4 + z4 + w4 = x4 + y4 + z4 − (ζ8w)4

= x4 + y4 + (z2 + (ζ8w)2)(z + ζ8w)(z − ζ8w)

= x4 + y4 +
1

2
(z′)3w′ +

1

2
(w′)3z′

= x4 + y4 + (z′′)3w′′ + (w′′)3z′′

where ζ8 ∈ k is a primitive 8th root of unity, η ∈ k satisfies η4 = 1/2, and we put

z′ = z + ζ8w, w′ = z − ζ8w, z′′ = ηz′, and w′′ = ηw′. By the same calculation,

we see that the surfaces XA obtained from rows 1, 2, and 4 are all isomorphic, and

that the surfaces obtained from rows 7 and 8 are isomorphic.

From this, we see that the number of isomorphism classes of surfaces XA repre-

sented in Table 1 is at most 7; on the other hand, by looking at the last column,

the number of isomorphism classes is also at least 4. We have not attempted to

determine this number more precisely than this.

Example 9.4 (Double sextics of BHK type).

We suppose p = char(k) = 0.

If B is a smooth curve of degree 6 in P2, then the double cover YB of P2 branched

over B will be a K3 surface. The surface YB is a double sextic, and one may view

it as a hypersurface of degree 6 in P3(3, 1, 1, 1). The surface ZA,G arising from an

adequate BHK pair (A,G) will be a quotient of a double sextic if it has weights

q = (3, 1, 1, 1) and degree h = 6.

To write down all polynomials FA giving such surfaces, one again uses the

Kreuzer-Skarke classification. One may write down the Fermat, loop, and chain

atomic types of degree 6 having weights (1, . . . , 1) or (3, 1, . . . , 1), and then form

polynomials FA containing exactly one type with the latter weight system; for in-

stance, x6+xy5 is a chain with weights (3, 1) and degree 6, while z5w+w5z is a loop

with weights (1, 1) and degree 6, and so one example is FA = x6 +xy5 + z5w+w5z

with weights q = (3, 1, 1, 1) and degree h = 6.
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Table 2. Picard numbers of double sextics of BHK type

FA (qT;hT ) ρ(ZA,G)

1 x2 + y6 + z6 + w6 (3, 1, 1, 1; 6) 20

2 x2 + y6 + z5w + w5z (3, 1, 1, 1; 6) 20

3 x2 + y5z + z5w + w5y (3, 1, 1, 1; 6) 20

4 x2 + xy3 + z6 + w6 (2, 2, 1, 1; 6) 20

5 x2 + xy3 + z5w + w5z (2, 2, 1, 1; 6) 20

6 x2 + xy3 + z5w + w6 (5, 5, 3, 2; 15) 14

7 x2 + xy3 + yz5 + w6 (11, 8, 6, 5; 30) 14

8 x2 + y6 + z5w + w6 (15, 6, 5, 4; 30) 14

9 x2 + xy3 + yz5 + zw5 (9, 7, 5, 4; 25) 2

10 x2 + y5z + z5w + w6 (25, 10, 8, 7; 50) 2

In this way one obtains the polynomials listed in Table 2; note that the variables

have been arranged so that x has weight 3. The surface XA defined by any one of

these polynomials FA does not contain (1 : 0 : 0 : 0), the unique singular point of

P3(3, 1, 1, 1), and so is not only well-formed but smooth. Hence (A,G) will be an

adequate BHK pair for any JFA
⊆ G ⊆ SL(FA). As in Example 9.2, if FA does

not contain any chain summands then the surfaces XA and XAT will both live in

P3(3, 1, 1, 1) and be isomorphic via a permutation of variables; in this case, one

will have ρ(ZA,G) = 22 − φ(6) = 20. These polynomials make up rows 1–3 of the

table. When FA contains at least one chain summand, one may check in each case

that (AT , GT ) is adequate, and hence Theorem 8.2 applies for the calculation of

ρ(ZA,G).

Remark 9.5. As in Example 9.2, polynomials in distinct rows of Table 2 can yield

isomorphic surfaces over k; this is evidenced, for instance, by the equality

x2 + xy3 = (x+
1

2
y3)2 − 1

4
y6.

More precisely, this equality shows that, over k, the surfaces XA coming from rows

1 and 4 are isomorphic, the surfaces from rows 2 and 5 are isomorphic, the surfaces

from rows 6–8 are all isomorphic, and the surfaces from rows 9 and 10 are isomor-

phic. Hence the number of isomorphism classes of the surfaces XA represented in

Table 2 lies between 3 and 5.

Example 9.6.

We suppose p = char(k) = 0.

To verify Corollary 1.4, we present in Table 3 a list of polynomials FA that give

rise to K3 surfaces of BHK type having every possible Picard number permitted by

Theorem 8.2. The examples listed in Table 3 are drawn (rather arbitrarily) from

those in Table 1, Table 2, and the tables in [ABS, CLPS, CP]. The first column

lists FA, the second lists the weights and degree of FA, the third lists the weights

and degree of FAT , and the fourth lists the Picard number of the surfaces ZA,G.
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Table 3. Examples of K3 surfaces of BHK type with each possible

Picard number

FA (q;h) (qT;hT ) ρ(ZA,G)

x2 + xy3 + yz5 + zw5 (3, 1, 1, 1; 6) (9, 7, 5, 4; 25) 2

x3y + y3z + z3w + w4 (1, 1, 1, 1; 4) (9, 7, 6, 5; 27) 4

x2 + y5 + z5 + zw8 (5, 2, 2, 1; 10) (20, 8, 7, 5; 40) 6

x4 + y3z + z3w + w4 (1, 1, 1, 1; 4) (12, 9, 8, 7; 36) 10

x2 + y3z + yz4 + w22 (11, 6, 4, 1; 22) (11, 6, 4, 1; 22) 12

x2 + xy3 + z5w + w6 (3, 1, 1, 1; 6) (5, 5, 3, 2; 15) 14

x2 + xy2 + z7 + yw7 (14, 7, 4, 3; 28) (3, 2, 1, 1; 7) 16

x4 + y4 + z3w + w4 (1, 1, 1, 1; 4) (4, 3, 3, 2; 12) 18

x4 + y4 + z4 + w4 (1,1,1,1;4) (1,1,1,1;4) 20
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