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Abstract. We give a one-parameter family of surfaces over Q with pg = q = 1

and K2 = 2 whose Picard number is at least 8 (and in some cases is exactly

8). This is close to the Hodge-theoretic upper bound h1,1 = 10, making them

analogous and conjecturally related to a family of K3 surfaces of Picard number

at least 18.

1. Introduction

Let k be a finitely-generated field of characteristic 0, with algebraic closure k̄,

and let X denote smooth projective algebraic surface over k. The geometric Picard

number ρ of X is defined as a rank of the Néron-Severi group NS(Xk̄), where the

latter denotes the group of divisors on Xk̄ modulo algebraic equivalence. By Hodge

Theory, one has the upper bound ρ ≤ h1,1 = B2 − 2pg, where B2 is the second

Better number and pg is the geometric genus, and we may say (informally) that X

has large Picard number if ρ is “close” to this upper bound.

When the Picard number of X is large, this not only points to the existence

of interesting sources of algebraic curves on X, but also to convenient geometric

and arithmetic features. The case of K3 surfaces is a good example; here, one has

B2 = 22, pg = 1, and thus ρ ≤ 20. For instance, a K3 surface with ρ ≥ 12 possesses

an elliptic fibration with a section, and when ρ ≥ 17 one can sometimes deduce

the existence of an interesting algebraic correspondence (arising from a Shioda–

Inose structure) between X and an abelian surface [Mor1]. When ρ ≥ 19, such a

correspondence is guaranteed, and this has been used to deduce certain modularity

results for X when k = Q [Liv, Yui].

In this paper we seek examples of surfaces X with pg = q = 1 and K2 = 2

with large Picard number. This interesting collection of surfaces of general type

has been classified by Bombieri–Catanese [Cat] and Horikawa [Hor]. In particular,

one knows that they are parametrized by an irreducible variety of dimension 7,

with one of these dimensions accounting for the isomorphism class of the elliptic

curve Alb(X). For such X, one has 2 ≤ ρ ≤ 10, where the lower bound takes into

consideration the classes of the canonical divisor and an Albanese fiber. In [LL],

an explicit example is produced that shows this lower bound is sharp. In contrast,

this note gives a one-parameter family of examples where ρ is much closer to the

upper bound:
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Theorem 1.1. Fix τ ∈ k such that

τ(τ2 − 1)(9τ2 − 1)(1 + 6τ + τ2) 6= 0,

and define the elliptic curve

Eτ : y2 = x3 + (1− 6τ2 − 3τ4)x2 + 16τ6x,

as well as its quotient Êτ := Eτ/〈(0, 0)〉. There exists an explicit surface Xτ with

pg = q = 1,K2 = 2, and Alb(Xτ ) = Êτ whose Picard number over k satisfies

ρ ≥ 8. Moreover, this bound cannot be improved in general, as X3 has Picard

number ρ = 8.

Let us give some indication of the nature (specifically what we mean by “ex-

plicit”) and proof of the theorem. By the aforementioned classification theorem,

the Albanese map Xτ → Êτ factors as Xτ → B̂ → Êτ , where B̂ → Eτ is a P1-

bundle and Xτ → B̂ is a ramified double cover. Pulling these two maps back via

Eτ → Êτ , one obtains a diagram

Yτ //

��

Xτ

��

B //

��

B̂

��

Eτ // Êτ ,

where each horizontal map is an unramified double cover. In particular, Xτ is

the quotient of Yτ by a certain free involution. We give explicit equations for the

branch curve of the double cover Yτ → B (see Theorem 5.3). The proof of the first

statement in the theorem will follow from the fact that this branch curve possesses:

(1) Two A5-singularities that map to a single k-rational A5-singularity in the

branch curve of Xτ → B̂. (This will imply the Picard number of Xτ is at

least 7.)

(2) A certain tangency to another irreducible curve on B, which will produce a

reducible divisor in Yτ that remains reducible when projected to Xτ . (This

will increase the lower bound from 7 to 8.)

The second statement in the theorem is proved using a method developed in [LL],

namely by computing the zeta function of the reduction of Y3 to F11, using this to

infer the zeta function of X3 over F11, and then deducing that 8 is also an upper

bound for the Picard number of X3.

By a result of Morrison [Mor2], to any surface X with pg = q = 1 and K2 = 2

over C, one may use Hodge theory to associate a K3 surface ZX , unique up to

isomorphism, whose transcendental part is isomorphic (as a rational Hodge struc-

ture) to that of X. (Here the transcendental part of a complex algebraic surface

Z refers to the orthogonal complement in H2(Z,Q) of the rational (1, 1)-classes

under the cup product form.) With Xτ as in Theorem 1.1, this means that ZXτ
has Picard number at least 18. Given the aforementioned work of Morrison [Mor1]
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on K3 surfaces with large Picard number, it would be of interest to seek a nontrivial

geometric correspondence between the surfaces Xτ ,a family of K3 surfaces, and (if

possible) a family of abelian surfaces. In a more arithmetic direction, the surfaces

Xτ are surfaces of general type that do not arise in any obvious way as Shimura

varieties, and thus it would be interesting to show that Xτ is modular for at least

some τ ∈ Q. The fact that their transcendental part has dimension at most 4 offers

hope that current techniques from the theory of Galois representations might be

able to achieve this.

Here is an outline of the paper. In §2, we describe how the classification of

surfaces with pg = q = 1 and K2 = 2 allows one to view them as quotients of other

surfaces by a free involution. Tractable equations for the latter class of surfaces

are then developed in §3 and §4. In §5, we identify the surfaces Xτ from Theorem

1.1 (which are denoted as X−(µ(τ)) in the body of the paper) and show that their

Picard number is at least 7 (Corollary 5.4). We then increase this lower bound in

§6 by identifying a special element in the Néron-Severi group (Proposition 6.1); it

is worth noting this section also contains a small number of examples where Xτ

has Picard number at least 9, but these are not defined over Q (Proposition 6.2).

Finally, §7 shows that this lower bound is sharp for the surface X3 (Corollary 7.2).

2. Quotient constructions of surfaces with pg = q = 1, K2 = 2

Let k be a finitely-generated field of characteristic 0, and let k̄ denote its algebraic

closure. In independent work, Bombieri–Catanese and Horikawa classified algebraic

surfaces over k̄ with invariants pg = q = 1 and K2 = 2, by realizing them as certain

branched double covers of symmetric squares of elliptic curves. Let A be an elliptic

curve over k̄ and let Sym2(A) denote its symmetric square. The Abel-Jacobi map

AJ : Sym2(A)→ A, P + P ′ 7→ P ⊕A P ′,

gives Sym2(A) the structure of a P1-bundle over A. Define on Sym2(A) the invert-

ible sheaf

L̂ := OSym2(A)(3)⊗AJ∗OA(−0A).

Theorem 2.1 ([Cat],[Hor]). The following hold:

(1) The general element of the linear system |L̂⊗2| is a smooth curve on Sym2(A),

and Γ(Sym2(A), L̂⊗2) = 7.

(2) If the curve Γ ∈ |L̂⊗2| has at most simple singularities, let X ′ denote the

minimal resolution of the double cover of Sym2(A) inside the line bundle

associated to L̂ that has branch locus Γ. Then X ′ is the canonical model of

a minimal algebraic surface X with invariants pg = q = 1 and K2 = 2, and

the composition X → X ′ → Sym2(A)→ A is an Albanese fibration of X.

(3) Any minimal algebraic surface Y over k̄ with invariants pg = q = 1, K2 =

2, and Alb(Y ) = A is isomorphic a surface X arising from the construction

above.
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Remark 1. In the statement of [LL, Theorem 2.1] (which is essentially the same as

Theorem 2.1 above), the singularities of the branch curve should be corrected to

read “simple singularities”, rather than “rational double points.”

Following [LL] (which draws from ideas in [Ish]), we now describe how one may

use this classification to find explicit equations for unramified double covers of

surfaces over k with pg = q = 1, K2 = 2. Let E be an elliptic curve over k with a

fixed k-rational 2-torsion point P1 ∈ E(k). We also let P0 := 0E denote the identity

element of E.

Let Ê := E/ 〈P1〉 denote the quotient of E by the translation P 7→ P ⊕E P1,

and let ϕ : E → Ê denote the quotient map. Then Ê is an elliptic curve over k,

and one may apply Theorem 2.1 to classify all surfaces over k̄ with pg = q = 1,

K2 = 2, and Albanese variety Êk̄. In doing so, one is led to consider the P1-bundle

Sym2(Êk̄)→ Êk̄, and this P1-bundle turns out to be k̄-isomorphic to the P1-bundle

ρ̂ : B̂→ Ê, where

B̂ := Proj
(

Sym
(
ϕ∗OE(P0)

))
.

By abuse of our earlier notation, we will write

L̂ := OB̂(3)⊗ ρ̂∗OÊ(−0Ê)

Hence classifying surfaces over k̄ with pg = q = 1, K2 = 2, and Albanese variety Êk̄
comes down to studying the double covers obtained from the linear system |L̂⊗2|
on B̂k̄.

Next we define the P1-bundle ρ : B→ E by

B := Proj
(
Sym

(
OE(P0)⊕OE(P1)

))
.

Given that

(2.1) OE(P0)⊕OE(P1) = ϕ∗ϕ∗OE(P0),

we have a Cartesian square

B

ρ

��

Φ // B̂

ρ̂
��

E
ϕ
// Ê.

In particular, ϕ and Φ are both unramified double covers. The translation P 7→
P ⊕E P1 lifts to an involution ι : B → B, and the quotient of B by ι gives the

map Φ. Our primary reason for studying the unramified double cover B is that the

sheaf in (2.1) easily yields local projective coordinates on B; this is detailed in §3.

We will also define on B the invertible sheaf

(2.2) L := Φ∗L̂ = OB(3)⊗ ρ∗OE(−P0 − P1).

We let

π̂ : L̂ = Spec(Sym(L̂∨))→ B̂, π : L = Spec(Sym(L∨))→ B
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denote the projection from the total spaces of L̂ and L, respectively. As L is the

pullback of L̂ via Φ, we have an unramified double covering Ψ : L → L̂ that fits

into the diagram

L
Ψ //

π

��

L̂

π̂
��

B
Φ //

ρ

��

B̂

ρ̂
��

E
ϕ
// Ê.

We let ι+ : L → L denote the pullback of the free involution ι : B → B; thus

the quotient of L by ι+ gives Ψ. Since Ψ = Ψ ◦ ι+, we see the invertible sheaf

π∗L on L is preserved by (ι+)∗. Let us define a second free involution ι− by

ι− = ι+ ◦ [−1] = [−1] ◦ ι+, where [−1] : L → L denotes the automorphism giving

multiplication by −1 on each fiber; then (ι−)∗ also preserves π∗L.

Later we shall need:

Lemma 2.2. Let W ∈ Γ(L, π∗L) denote the tautological section of π∗L. Then

(ι+)∗(W ) = W and (ι−)∗(W ) = −W .

Proof. The B-scheme L represents the functor from B-schemes to abelian groups

given by

(f : T → B) 7→ Γ(T, f∗L),

see [GW, Prop. 11.3], and the tautological sectionW corresponds to IdL ∈ HomB(L,L).

A similar statement applies to the tautological section Ŵ of π̂∗L̂, and hence we have

Ψ∗Ŵ = W . Given that Ψ is the quotient map of L by ι+, we conclude (ι+)∗ fixes

W . On the other hand, [−1]∗W = −W , and so (ι−)∗W = −W as well. �

Since we have an isomorphism

Φ∗ : Γ(B̂, L̂⊗2) −̃→
[
Γ(B,L⊗2)

]ι
,

we will set ŝ := (Φ∗)−1(s) whenever s ∈
[
Γ(B,L⊗2)

]ι
; we note that, as L̂, L, and Φ

are defined over k, the isomorphism above is one of k-vector spaces (of dimension

7, by Theorem 2.1). By taking divisors of zeros, the sections also s and ŝ yield

effective divisors

Z(s) ∈ |L⊗2|, Z(ŝ) ∈ |L̂⊗2|.

Definition 2.3. Given a section s ∈
[
Γ(B,L⊗2)

]ι
, we let Y0(s) → B denote the

double cover of B inside L ramified over Z(s); more precisely, Y0(s) is the divisor

of zeros of the section

W 2 − π∗s ∈ Γ(L, π∗L⊗2).

Similarly, let X+
0 (s)→ B̂ be the double cover of B̂ inside L̂ ramified over Z(ŝ).

Remark 2. When working over a non-closed field k, the definition of Y0(s) depends

not only upon the branch curve Z(s), but also upon the section s. Indeed, if

a ∈ k× \ (k×)2 is a nonsquare element, then the section W 2−π∗(as) gives a surface

Y0(as) that need not be isomorphic to Y0(s) over k.
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If, as in the proof of Lemma 2.2, we let Ŵ ∈ Γ(L̂, π̂∗L̂) denote the tautological

section, then the defining sections of Y0(s) and X+
0 (s) are related by

W 2 − π∗s = Ψ∗(Ŵ 2 − π̂∗ŝ).

Hence we have a commutative diagram

(2.3) Y0(s)

��

q+
// X+

0 (s)

��

B
Φ //

��

B̂

��

E
ϕ

// Ê

in which the top square is Cartesian. Thus q+ is an unramified double covering

map; in fact, q+ is the quotient map of Y0(s) by the restriction of ι+ ∈ Aut(L)

to Y0(s); by abuse of notation, we again denote this restriction by ι+. Similarly,

we still use ι− to denote the restriction of ι− ∈ Aut(L) to Y0(s). Note that h =

ι+ ◦ ι− = ι− ◦ ι+ is the hyperelliptic involution on Y0(s) over B, and thus the

subgroup {Id, h, ι+, ι−} ⊆ Aut(Y0(s)) is isomorphic to the Klein 4-group.

If S → T is a double covering of surfaces over k, with T nonsingular, and (re-

duced) branch locus Γ ⊆ T , one may form its canonical resolution (see [BHPVdV,

III.7]), which is a double cover S̃ → T̃ forming a Cartesian square

S̃ //

��

S

��

T̃ // T

.

Briefly, S̃ → T̃ is obtained by applying the σ-process simultaneously at all points

of the singular locus of Γ ⊆ T to obtain T1 → T , letting S1 be the normalization of

S ×T T1 so that S1 → T1 is a new double cover with its own branch locus Γ1, and

repeating this process as necessary until the covering surface is nonsingular. When

the branch locus Γ of S → T has at most simple singularities, the resolution S̃ → S

is minimal, in the sense that no (−1)-curves are contracted via this map.

Definition 2.4. For s ∈
[
Γ(B,L⊗2)

]ι
, let Y (s) denote the canonical resolution of

Y0(s) obtained from the double covering Y0(s)→ B.

The involutions ι+, ι−, h on Y0(s) extend uniquely (via pullback by the resolution

map Y (s)→ Y0(s)) to involutions on Y (s), and we use the same notation to denote

these elements of Aut(Y (s)). Note that ι+ and ι− are both free.

Definition 2.5. For s ∈
[
Γ(B,L⊗2)

]ι
, we define the two quotient surfaces

X+(s) := Y (s)/ι+, X−(s) := Y (s)/ι−.
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Remark 3. For statements that apply to both X+(s) and X−(s), or to ι+ and

ι−, we will frequently use the notation Xε(s) and ιε, with the understanding that

ε ∈ {+,−}.

Since the composition Y (s) → Y0(s) → B → E → Ê is invariant under ιε, we

have a fibration Xε(s)→ Ê.

Theorem 2.6. Assume that s ∈
[
Γ(B,L⊗2)

]ι
has the following two properties:

• The divisor Z(s) on B has at most simple singularities, all defined over k.

• The fibration Y (s)→ E is relatively minimal (or, equivalently, the surface

Y (s) is minimal).

Then the surface Xε(s) is a smooth minimal surface over k with invariants pg =

q = 1, K2 = 2, and Albanese variety Ê.

Proof. Given that the divisor Z(s) in B is an unramified double cover of the divisor

Z(ŝ) in B̂, both have at most simple singularities. From Theorem 2.1 it follows that

X+
0 (s) (which was defined as the double cover of B̂ inside L̂ ramified over Z(ŝ)) is

the canonical model of a surface over k with pg = q = 1,K2 = 2.

We will first show the that, up to isomorphism over k, the surface X+(s) is the

canonical resolution of X+
0 (s) obtained from the double cover X+

0 (s) → B̂. Let

X1 → B̂1 denote the canonical resolution obtained from X+
0 (s)→ B̂ (as described

before Definition 2.4). Thus we have a commutative diagram

X1
//

��

X+
0 (s)

��

B̂1
// B̂

where the map B̂1 → B̂ is a certain sequence of σ-processes; furthermore, since

Z(ŝ) has only simple singularities (and thus no normalization is required in forming

the canonical resolution), this diagram is Cartesian. But as the branch locus of

Y0(s) → B is Z(s) = Z(Φ∗ŝ) = Φ∗Z(ŝ), it follows that the base change of this

sequence of σ-processes B→ B̂ will also yield the canonical resolution of Y0(s)→ B.

That is, if we define B1 = B×B̂ B̂1, then we have cubical diagram

(2.4) Y (s) //

��

}}

Y0(s)

��

q+{{

X1
//

��

X+
0 (s)

��

B1

}}

// B

Φ
{{

B̂1
// B̂
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where all faces of this cube commute and the bottom, front, back, and right faces

are Cartesian. hence a diagram chase shows that top face is Cartesian as well.

Therefore, by contracting the top and right faces of the cube, we arrive at the

Cartesian diagram

Y (s) //

��

X1

��

B
Φ // B̂,

showing that the covering Y (s) → X1 is the pullback of Φ : B → B̂, which is

the quotient map of B by ι; hence Y (s) → X1 is the quotient map of Y (s) by

ι+, and so X+(s) is isomorphic to the canonical resolution of X+
0 (s). Finally, this

isomorphism is defined over k, as the same is true of all of the maps considered in

this paragraph.

From the diagram (2.3) and our discussion of the cube (2.4), it follows that

(2.5) Y (s) //

��

X+(s)

��

E
ϕ

// Ê

is Cartesian. Thus the hypothesis that Y (s)→ E is relatively minimal implies the

same for X+(s) → Ê, and therefore X+(s) is minimal. By the remark from the

beginning of the proof, the theorem holds for X+(s).

It remains to verify the theorem for X−(s). As Y (s)→ X+(s) is an unramified

double cover, we have

K2
Y (s) = 2K2

X+(s) = 4,

χ(OY (s)) = 2χ(OX+(s)) = 2,

e(Y (s)) = 2e(X+(s)) = 20.

Moreover, one can use (2.5) to show (see [LL, Lemma 3.3]) that Alb(Y (s)) = E,

and thus Y (s) has irregularity q = 1. Since ι− is a free involution, it follows that

the quotient map Y (s) → X−(s) is also an unramified double cover. Hence the

invariants K2, χ, e of X−(s) will match those of X+(s). Moreover, the diagram

Y (s)

��

// X−(s)

��

B
Φ //

ρ

��

B̂

ρ̂
��

E
ϕ

// Ê

and the fact that Alb(Y (s)) = E allow us to conclude that Alb(X−(s)) = Ê. This

shows that X−(s) satisfies pg = q = 1, K2 = 2, and finally the minimality of Y (s)

implies that of X−(s). �
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Remark 4. The surfaces X+(s) and X−(s) are both double covers of B̂ with the

same branch locus, but in general they are not isomorphic over k̄. This indicates

that they live inside different line bundles over Ê. While X+(s) lives inside the

total space of L̂, one may show (using that fact that both surfaces are quotients

of Y (s)) that X−(s) lives inside the total space of L̂ ⊗ (ρ̂)∗(OÊ(0Ê − Q)), where

ϕ(E[2]) =
{

0Ê , Q
}

.

3. Coordinates for B and L

The reason for studying the unramified double cover B is that the locally free

sheaf in (2.1) decomposes into two fairly simple invertible sheaves on E, and this

yields convenient local coordinates on B. Given that

(3.1) Γ(B,OB(1)) = Γ(E,OE(P0))⊕ Γ(E,OE(P1)),

we let Z0 ∈ Γ(B,OB(1)) (resp. Z1 ∈ Γ(B,OB(1))) correspond to the element (1, 0)

(resp. (0, 1)) on the right side; note that in fact

(3.2) Zi ∈ Γ(B,OB(1)⊗ ρ∗OE(−Pi))

for i = 0, 1. Since[
Γ(B,OB(1))

]ι
= Γ(B̂,OB̂(1)) = Γ(Ê, ϕ∗OE(P0)) = Γ(E,OE(P0)) ' k,

it follows that Z0 + Z1 is the pullback of the unique (up to constant multiple)

nonzero section in Γ(B̂,OB̂(1)). In particular, the divisor Z(Z0 +Z1) is the unique

ι-invariant tautological divisor in B.

If we define on E the open subset U := E \ {P0, P1}, then B is trivial on

B|U = π−1(U), and (Z0 : Z1) gives relative projective coordinates there. For this

reason, we will write points on B|U in the form (P, (Z0 : Z1)), where P ∈ U and

(Z0 : Z1) ∈ P1. The fibers BP0 and BP1 are exchanged by ι, and hence ι preserves

B|U ; on this subset, it takes the form

ι(P, (Z0 : Z1)) = (P ⊕E P1, (Z1 : Z0)).

To obtain a complete open cover of B, we also need open sets that cover BP0
and

BP1
. For the objects we will work with, it will suffice to work with an infinitesimal

neighborhood of BP0 , and then appeal to ι-invariance in order to infer what happens

in a neighborhood of BP1 . With this in mind, let t ∈ k(E) denote a local parameter

at P0 on E (which we make explicit in (4.2) below). Recalling from (3.2) that

Z0 vanishes on BP0
, if U ′ is a sufficiently small neighborhood of P0 and we put

Z ′0 := t−1Z0, then (Z ′0 : Z1) gives relative projective coordinates on B|U ′ . Since t

is a local parameter at P0, we can write points of B near BP0 in the form in the

form (t, (Z ′0 : Z1)), with (Z ′0 : Z1) ∈ P1.

4. Equations for Z(s) and Y0(s)

The surfaces Y (s), X+(s), and X−(s) defined in §2 arise from ι∗-invariant sec-

tions of the invertible sheaf L in (2.2). We now recall a convenient description of
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these sections from [LL, Prop. 3.1]. First choose a Weierstrass equation for E over

k:

E : y2 = c(x) = (x− α1)(x− α2)(x− α3),

where c(x) ∈ k[x] is a nonsingular cubic. We let Pi = (αi, 0), i = 1, 2, 3, denote

the nontrivial 2-torsion points of E. If a := c′(α1), b := 1
2c
′′(α1) then we may also

write E in the form

(4.1) E : y2 = a(x− α1) + b(x− α1)2 + (x− α1)3.

Define on E the following four rational functions:

g0(P ) = x(P )− x(P1)

= x− α1

h0(P ) = y(P )

= y

g1(P ) = g0(P ⊕E P1)

=
a

x− α1

h1(P ) = h0(P ⊕E P1)

= − ay

(x− α1)2

By considering the divisors of g0, h0, g1, h1 and also using (3.1), one may show:

Proposition 4.1. A basis of
[
Γ(B,L⊗2)

]ι
is given by the following seven sections:

ψ0 := g0Z
6
0 + g1Z

6
1

ψ1 := g2
0Z

6
0 + g2

1Z
6
1

ψ2 := g0Z
5
0Z1 + g1Z0Z

5
1

ψ3 := h0Z
5
0Z1 + h1Z0Z

5
1

ψ4 := Z4
0Z

2
1 + Z2

0Z
4
1

ψ5 := g0Z
4
0Z

2
1 + g1Z

2
0Z

4
1

ψ6 := Z3
0Z

3
1 .

If s ∈
[
Γ(B,L⊗2)

]ι
, the expressions for the sections ψi given here work well for

analyzing the divisor Z(s) on B|U .

We now develop equations for analyzing Z(s) in a neighborhood of the fiber BP0
.

Define

(4.2) t :=
x− α1

y
=
g0

h0
= − g1

h1
,
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which is a local parameter at P0 on E. As discussed in §3, we will write points on

B near BP0
as (t, (Z ′0 : Z1)). Expanding the functions gi, hi in terms of t, one finds:

g0 =
1

t2
− b− at2 +O(t3)

h0 =
1

t
g0

g1 = at2 + abt4 +O(t6)

h1 = −1

t
g1

If we write s as a linear combination of the sections ψi, we may obtain an equation

for Z(s) near BP0
concretely by substituting the expansions above for g0, h0, g1, h1

and the equality Z0 = tZ ′0 into the equations in Proposition 4.1, and then dividing

by t2. Hence if s =
∑
i aiψi, then Z(s) is given in a neighborhood of BP0 by∑

aiχi = 0,

where

χ0 = aZ6
1 + t2

(
(Z ′0)6 + abZ6

1

)
+O(t4)

χ1 = (Z ′0)6 + t2(−2b(Z ′0)6 + a2Z6
1 ) +O(t4)

χ2 = t((Z ′0)5Z1 + aZ ′0Z
5
1 ) + t3(−b(Z ′0)5Z1 + abZ ′0Z

5
1 ) +O(t5)

χ3 = (Z ′0)5Z1 − aZ ′0Z5
1 + t2(−b(Z ′0)5Z1 − abZ ′0Z5

1 ) +O(t4)

χ4 = (Z ′0)2Z4
1 + t2(Z ′0)4Z2

1

χ5 = (Z ′0)4Z2
1 + t2(−b(Z ′0)4Z2

1 + a(Z ′0)2Z4
1 ) +O(t4)

χ6 = t(Z ′0)3Z3
1

Finally, we note that since ι∗s = s and ι exchanges BP0
and BP1

, the behavior

of Z(s) near BP1
can by inferred by our analysis near BP0

. Hence the polynomials

ψi ∈ k(U)[Z0, Z1] and χi ∈ k((t))[Z ′0, Z1] will give us a complete picture of Z(s).

To finish this section, we discuss equations for the surface Y0(s), with s =∑6
i=0 aiψi. The restriction of Y0(s) to B|U∩{Z1 6= 0} is given (in L) by an equation

of the form

T 2
0 =

6∑
i=0

aiψi

(Z0

Z1
, 1
)
,

and its restriction to B|U ∩ {Z0 6= 0} is given by

T 2
1 =

6∑
i=0

aiψi

(
1,
Z1

Z0

)
.

But it is simpler to unify these two local equations by considering the restriction of

Y0(s) to B|U as a family of curves in weighted projective space: it may be identified

with the family

(4.3) T 2 =

6∑
i=0

aiψi(Z0, Z1)
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in U × P2(1, 1, 3). By Lemma 2.2, in these coordinates the involutions ι+, ι−, h ∈
Aut(Y0(s)) take the form

ι+(P, (Z0 : Z1 : T )) = (P ⊕E P1, (Z1 : Z0 : T ))

ι−(P, (Z0 : Z1 : T )) = (P ⊕E P1, (Z1 : Z0 : −T ))

h(P, (Z0 : Z1 : T )) = (P, (Z0 : Z1 : −T ))

In a neighborhood of π−1(BP0
), Y0(s) is given by the equation

(4.4) (T ′)2 =

6∑
i=0

aiχ(t′, (Z0 : Z1)).

In particular, the fiber Y0(s)P0
⊆ P2(1, 1, 3) is obtained by setting t = 0 in (4.4).

Moreover, the fiber Y0(s)P1
is isomorphic to Y0(s)P0

over k.

5. An interesting linear subsystem

In this section we will study a linear subsystem of |L⊗2| whose generic elements

(i) are all singular at a special point of B and (ii) yield surfaces Y (s) whose Néron-

Severi group is not generated solely by the canonical divisor, an Albanese fiber,

and exceptional curves. By searching for elements where the singularity is more

extreme, we can find examples of surfaces with pg = q = 1,K2 = 2 that have large

Picard number.

First, for τ ∈ k, define

Eτ : y2 = x3 + (1− 6τ2 − 3τ4)x2 + 16τ6x.

The right side has discriminant ∆(τ) = 256τ12(τ2 − 1)3(9τ2 − 1). Letting

(5.1) S = {0,±1,±1/3} ,

we will assume in what follows that τ /∈ S, i.e., that Eτ is an elliptic curve. We let

P1 := (α1, 0) = (0, 0) so that, in the notation (4.1), we have

a = −16τ6, b = 1− 6τ2 − 3τ4.

We also note that, for a general point (x, y) ∈ Eτ , translation by P1 takes the form

(x, y)⊕Eτ P1 = (g1, h1) =

(
16τ6

x
,−16τ6y

x2

)
The curve Eτ is also equipped with a 6-torsion point

Q := (x, y) = (4τ2, 4τ2(τ2 − 1)),

which satisfies 3Q = P1.

Up to scalar multiplication, Z0 + Z1 is the unique element of
[
Γ(B,OB(H))

]ι
.

Hence H := Z(Z0 +Z1) is the pullback of the unique tautological divisor on B̂. We

let Λ ⊆ Γ(B,L⊗2)ι denote the subspace of sections whose divisors are tangent to

H at the two points (Q, (−1 : 1)) and (−Q, (−1 : 1)) in B|U . If we put Z := Z0/Z1

then at both of these points local parameters are given by (x − 4τ2, Z + 1). Note
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that the local equation of H near these points is Z + 1 = 0, so more precisely we

will say ψ ∈ Λ exactly when

ψ(Q, (−1 : 1)) =
∂ψ

∂x
(Q, (−1 : 1)) = ψ(−Q, (−1 : 1)) =

∂ψ

∂x
(−Q, (−1 : 1)) = 0.

(Note that as y may appear in ψ, ∂ψ/∂x is computed by implicit differentiation,

with ∂y/∂x being determined by the equation of Eτ .) Since each ψ is a linear

combination of the basis elements ψ0, . . . , ψ6, it follows that λ is the kernel of the

4-by-7 matrix 
ψj(Q, (−1 : 1))

ψj(−Q, (−1 : 1))
∂ψj
∂x (Q, (−1 : 1))

∂ψj
∂x (−Q, (−1 : 1))


0≤j≤6

One may calculate this kernel to conclude that (for any value of τ /∈ S) the following

four sections give a basis for Λ:

λ0 := ψ0 + ψ2

= (Z0 + Z1)(g0Z
5
0 + g1Z

5
1 )

λ1 := ψ0 − ψ5

= (Z0 + Z1)(Z0 − Z1)(g0Z
4
0 − g1Z

4
1 )

λ2 := ψ4 + 2ψ6

= (Z0 + Z1)2Z2
0Z

2
1

λ3 := −8τ2(τ2 + 1)ψ0 + ψ1 + 4τ4(1 + 4τ2 + τ4)(ψ4 − 2ψ6).

Note that λ0, λ1, λ2 are in the image of the inclusion[
Γ(B,L⊗2 ⊗OB(−H))

]ι
↪→
[
Γ(B,L⊗2)

]ι
,

and so the “tangency” of Z(λi) (for i = 0, 1, 2) to H at (±Q, (−1 : 1)) is actually

due to the fact that H ⊆ Supp(Z(λi)). But the same is not true of Z(λ3), and so the

tangency condition is a “genuine” one for generic λ ∈ Λ. This tangency condition

will play a role later in §6, where we consider its effect on the Picard numbers of

the surfaces Y (λ) and Xε(λ), for λ ∈ Λ. For now, we focus on singularities of the

divisors Z(λ).

Observe that Λ ⊆ Span
(
{ψ0, . . . , ψ6} \ {ψ3}

)
, which implies (since only ψ3

involves the functions h0, h1) that any λ ∈ Λ satisfies the additional symmetry

λ(P, (Z0 : Z1)) = λ(−P, (Z0 : Z1)).

Hence, for any P ∈ E, the local behavior of Z(λ) will be the same at each of the four

points (±P, (−1 : 1)), (±P ⊕Eτ P1, (−1 : 1)). In particular, Z(λ) will be tangent to

H at the four points (±Q ⊕Eτ P1, (−1 : 1)) = (±2Q, (−1 : 1)). Since H.Z(λ) = 8,

it follows, for generic λ, that the divisor Z(λ) intersects H only at the four points

(5.2) {(±Q, (−1 : 1)), (±2Q, (−1 : 1))} ⊆ B|U ,

and that the local intersection number at each of these points is 2.
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Proposition 5.1. The base points of the linear system |Λ| are precisely the four

points in (5.2).

Proof. One may start by checking that Z(λ0) ∩ Z(λ2) ∩ BU = H ∩ BU . Since a

generic Z(λ) intersects H only in the four points (5.2), this shows there are no

other base points in the open set B|U .

Next one may check that Z(λ0) ∩ Z(λ1) ∩ Z(λ2) ∩ BP0
consists of the single

point (t, (Z ′0 : Z1)) = (0, (1 : 0)). But this is a point on H = Z(tZ ′0 + Z1). Since a

generic Z(λ) does not intersect H in the fiber BP0 , |Λ| has no base points in BP0 .

By ι-invariance, the same is true in the fiber BP1
. �

Corollary 5.2. A general element of |Λ| is smooth.

Proof. Bertini’s theorem shows this is true away from the four base points. On the

other hand, for a given value of τ one may find λ such that Z(λ) is smooth at each

of these base points:

• When 4τ2 6= ±1 and 4τ4 6= ±1, one may take λ = λ0, since Z(g0Z
5
0 +g1Z

5
1 )

does not meet H at any of the base points points.

• When τ2 6= ±1, one may take λ = λ3.

�

Hence the set of singular elements in |Λ| has codimension at least one. If Z(λ)

has a singularity at a general point (P, (Z0 : Z1)) ∈ B|U , then it is in fact singular

at the four points

(5.3) (±P, (Z0 : Z1)), (±P ⊕Eτ P1, (Z1 : Z0)).

However, if we fix σ ∈ k̄ such that σ2 = (1− τ)(1 + 3τ), then the point

(5.4) R := (4τ3, 4τ3(τ − 1)σ) ∈ Eτ (k(σ))

satisfies R ⊕Eτ P1 = −R; hence if Z(λ) is singular at (R, (1 : 1)), then this only

implies a singularity at the second point (−R, (1 : 1)). Heuristically, due to this

“collapse” of four singularities into two, one therefore hopes that those Z(λ) which

are singular at (R, (1 : 1)) might offer a richer set of singularities to exploit.1 This

turns out to be fruitful:

Theorem 5.3. If τ /∈ S and 1 + 6τ + τ2 6= 0, define µ(τ) :=
∑3
i=0 c0λ0 ∈ Λ, where

c0 = 4(1− τ)2τ2(1 + 14τ + 34τ2 + 14τ3 + τ4)

c1 = 8τ3(3 + 28τ + 34τ2 + 28τ3 + 3τ4)

c2 = −8τ6(1− 52τ − 90τ2 − 52τ3 + τ4)

c3 = (1 + 6τ + τ2)2.

The divisor Z(µ(τ)) has a singularity of type A5 at (R, (1 : 1)).

1Note that the same heuristic reasoning might be applied at the point (R, (−1 : 1)), which is

a point on H; the intersection number H.Z(λ) = 8 implies that Z(λ) can only pass through this

point when H ⊆ Supp(Z(λ)), i.e., when λ ∈ Span({λ0, λ1, λ2}). Investigation of this case did not

yield surfaces with Picard numbers as large as those in Propositions 6.1 and 6.2.
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While the proof of this theorem only requires a straightforward verification, see

Remarks 5 and 6 for two ways to derive the coefficients ci.

Proof. As (R, (1 : 1)) is not a base point of |Λ|, there is a proper subspace H ⊆ Λ

describing those elements that vanish at (R, (1 : 1)); explicitly, if λ =
∑3
i=0 aiλi

then H is described by

(5.5) H : 4τ3a0 + a2 − 8τ5(2− τ + 2τ2)a3 = 0.

Putting Z = Z0/Z1, local parameters at (R, (1 : 1)) are given by (u, v) = (x −
4τ3, Z − 1). If λ ∈ H then (upon expanding λ0, . . . , λ3) we obtain in terms of these

parameters the series expansion

λ = a0(λ0 − 4τ3λ2) + a1λ1 + a3(λ3 + 8τ5(2− τ + 2τ2)λ2)

=

(
1

2τ3
a0 −

2(1− τ)2

τ
a3

)
u2

+
(
10a0 + 4a1 − 48τ2(1− τ + τ2)a3

)
uv

+
(
48τ3a0 + 32τ3a1 − 8τ4(6 + 34τ + 7τ2 + 34τ3 + 6τ4)a3

)
v2

+ (higher terms)

(5.6)

This shows that in fact every Z(λ) ∈ |H| has a singularity at (R, (1 : 1)), which is

isolated with multiplicity 2; for generic λ ∈ H, it will be of type A1.

Now consider the element µ(τ). One may easily check that (c0, c1, c2, c3) satisfies

(5.5), and thus the local form of µ(τ) near (R, (1 : 1)) will look like (5.6) with

ai = ci. In this local form, one may also check that the hessian determinant at

(u, v) = (0, 0) vanishes, so there is a singularity of type An for n > 1. The value of

n may be determined by repeated blow ups. Indeed, blowing up once reveals that

the proper transform of the curve Z(µ(τ)) has one singularity where it meets the

exceptional divisor, and blowing up a second time reveals that the proper transform

has an A1-singularity where it meets the (second) exceptional divisor. Hence the

original singularity was of type A5. See [Lyo] for details of this calculation in

Mathematica. �

Corollary 5.4. We have the following lower bounds for Picard numbers:

(1) The Picard number of Y (µ(τ)) over k (resp. k(σ)) is at least 7 (resp. at

least 12).

(2) The Picard number of the surface Xε(µ(τ)) over k is at least 7.

Proof. The class of the canonical divisor and an Albanese fiber guarantee these

surfaces have Picard number at least 2 over k. By Theorem 5.3, Y0(µ(τ)) has A5-

singularities at the points above (±R, (1 : 1)) ∈ B|U , and this pair of points (which

we recall are defined over k(σ), see (5.4)) forms a single orbit under the actions of

both ι and Gal(k̄/k). Hence:

• On the resolution Y (µ(τ)), there will be two corresponding chains C1, . . . , C5

and C ′1, . . . , C
′
5 consisting of (−2)-curves that are defined over k(σ) and are

exchanged by ι. The divisors Ci+C
′
i will be invariant under Gal(k̄/k), while

the divisors Ci − C ′i will be anti-invariant. This gives the first statement.
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• The quotient surface Xε
0(µ(τ)) = Y0(µ(τ))/ιε will have a k-rational A5-

singularity, and the exceptional curves that this contributes to the Néron-

Severi group of Xε(µ(τ)) will guarantee that the latter surface has Picard

number at least 7 over k. (Note that these exceptional curves pull back to

the ιε-invariant divisors Ci + C ′i on Y (µ(τ)).)

�

Remark 5. The proof of Theorem 5.3 indicates one method for deriving the coeffi-

cients ci of µ(τ). First one can compute the hessian determinant in the local equa-

tion (5.6) to obtain, in terms of the variables a0, a1, a3, τ , a smooth quadric curve

C2 ⊆ |H| representing divisors that have a degenerate singularity at (R, (1 : 1)). If

one blows up B at (R, (1 : 1)) and computes the type of singularity on the proper

transform, then for general λ ∈ C2 one finds an A1-singularity; that is, when one

examines the local equation of the proper transform near its singularity, the hessian

determinant does not vanish for a general element of C2. Thus the general element

of C2 has an A3-singularity at (R, (1 : 1)). However, if this determinant does vanish,

then the singularity will be of higher order; this determinant defines a quintic curve

C5 ⊆ |H| in the variables a0, a1, a3, τ . Hence one can focus upon values of λ coming

from points of the scheme C2 ∩ C5 ⊆ P2 × A1
τ .

Ignoring cases when H ⊆ Supp(Z(λ)), one may restrict to the open set where

a3 = 1. The radical decomposition for the ideal in Q[a0, a1, τ ] defining C2∩C5 on this

open set can be computed quickly in Magma. (In fact, computing a probable radical

decomposition is even quicker and usually suffices for this sort of experimentation.)

Among the components that are identified by this decomposition, one of them

corresponds precisely to the family µ(τ).

See [Lyo] for an implementation of this approach.

Remark 6. The heuristic reasoning preceding Theorem 5.3 and the method in Re-

mark 5 reflect the benefit of hindsight. In fact, we originally stumbled upon µ(τ) by

experimental analysis of the locus of singular elements in |Λ|. This locus of singular

elements in |Λ| is represented by a reducible hypersurface Σ in P3. If one wishes

to find λ ∈ Λ with “richer” singularities, one well-known tactic is to seek points

(a0 : a1 : a2 : a3) where Σ is highly singular, and then investigate Z(
∑
aiλi).

In practice, however, we found that the task of determining equations for Σ

was only computationally feasible when we specialized τ to some specific value

τ0 and worked in a prime characteristic p. After trying multiple pairs (τ0, p), we

came to believe in the existence of the noteworthy family µ(τ), but did not have

the equations in Theorem 5.3. By finessing the computations, we were able to

determine:

(1) The coefficients of µ(τ) in characteristic p when one fixes the prime p.

(2) The coefficients of µ(τ0) in characteristic 0 when one fixes the value of τ0.

From (1) we learned the degrees of the coefficients ci(τ) in Theorem 5.3. Then

by choosing multiple values of τ0 in (2), we were able to use basic polynomial

interpolation to fully determine ci(τ).
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6. Increasing the Picard number

By construction, for each λ ∈ |Λ| the divisor Z(λ) either contains H = Z(Z0+Z1)

in its support or it intersects H in precisely the four points in (5.2), with each

intersection having with multiplicity 2. If λ =
∑
aiλi and one uses the polynomials

in Proposition 4.1 to write down Z(λ)∩BU (so that one is working with polynomials

in k(Eτ )[Z0, Z1]), then this is reflected algebraically by the factorization

λ(Z0,−Z0) = a3λ3(Z0,−Z0) =
a3Z

6
0 (x− 4τ2)2(x− 4τ4)2

x2

Hence if a3 = b23 ∈ (k×)2 is a nonzero square in k, the divisor ρ∗H in the double

cover ρ : Y0(λ) → B will be reducible over k. If, as in (4.3), we identify Y0(λ)|U
with the hypersurface

Z
(
T 2 − λ(Z0, Z1)

)
= Z

(
T 2 −

3∑
i=0

aiλi(Z0, Z1)
)

in U × P2(1, 1, 3), then the divisor ρ∗H|U is the sum of the two curves

C = Z

(
T − b3Z

3
0 (x− 4τ2)(x− 4τ4)

x
, Z0 + Z1

)
and

C ′ = Z

(
T +

b3Z
3
0 (x− 4τ2)(x− 4τ4)

x
, Z0 + Z1

)
.

But on B|U the involutions ι+, ι− take the form

ι+((x, y), (Z0 : Z1 : T )) =

((
16τ6

x
,−16τ6y

x2

)
, (Z1 : Z0 : T )

)
ι−((x, y), (Z0 : Z1 : T )) =

((
16τ6

x
,−16τ6y

x2

)
, (Z1 : Z0 : −T )

)
,

and hence (ι+)∗ swaps C and C ′, while (ι−)∗ preserves them. (Note that we are

using the fact that H does not contain BP0
or BP1

as components, and hence the

action of these involutions of C,C ′ may be inferred by what happens on B|U .) Thus

we have:

Proposition 6.1. The following hold:

(1) For generic λ ∈ |Λ|, the surface X−(λ) has smooth canonical model (i.e.,

Z(λ) is smooth) and geometric Picard number at least 3.

(2) The Picard number of Y (µ(τ)) over k (resp. k(σ)) is at least 8 (resp. at

least 13).

(3) The Picard number of X−(µ(τ)) over k is at least 8.

One might wish to increase the Picard number of Xε(µ(τ)) even further by

searching for more singularities on the divisor Z(µ(τ)). A computer search reveals

that this is possible only for a handful of values of τ :

Proposition 6.2. Let τ ∈ k satisfy the hypotheses of Theorem 5.3, and define

f(X) = 8X11 + 248X10 + 2868X9 + 16304X8 + 48479X7

+73647X6 + 53611X5 + 20851X4 + 4565X3 + 565X2 + 37X + 1.
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(1) Suppose that f(τ) = 0. The singular locus of Z(µ(τ)) consists of the A5-

singularities from Theorem 5.3 and two additional ι-conjugate A1-singularities.

Thus:

(a) The geometric Picard number of X+(µ(τ)) is at least 8.

(b) The geometric Picard number of X−(µ(τ)) is at least 9.

(2) Suppose that f(τ) 6= 0. The singular locus of Z(µ(τ)) consists only of the

A5-singularities from Theorem 5.3.

In either case, the fibration Y (µ(τ)) → Eτ is relatively minimal and thus the sur-

faces X+(µ(τ)) and X−(µ(τ)) are minimal surfaces with invariants pg = q =

1,K2 = 2.

Proof. Recall that the A5-singularities in Theorem 5.3 occur at (±R, (1 : 1)), where

x(±R) = 4τ3. When one uses Magma to search for values of τ such that Z(µ(τ))

has a singularity above a point P = (x, y) ∈ U with x 6= 4τ3, the conclusion is

that τ must be a root of f(X). On the other hand, if one searches for τ having

singularities at points (±R, (Z0 : Z1)) ∈ B|U with (Z0 : Z1) 6= (1 : 1), no values of

τ are returned. Moreover, one checks that Z(µ(τ)) is always smooth at the fiber

BP0 (and hence also BP1). Hence (2) holds.

Now assume that f(τ) = 0. From Theorem 5.3 and the previous paragraph,

we know that the singular locus of Z(µ(τ)) contains at least four points. The

polynomial f is irreducible and the coefficients of Z(µ(τ)) belong to Z[τ ], so it

suffices to show that (1) holds when k = Q(τ). One can easily find a prime p such

that f̄ ∈ Fp[X] has a simple root τ̄p ∈ Fp, and by Hensel’s lemma this lifts to a

root τp ∈ Zp; hence there is an embedding

Z[τ ] ↪→ Zp, τ 7→ τp,

so that Z(µ(τ)) has an integral model over Zp. It is also easy to find p having the

additional property that Eτ̄p := Eτ ⊗Zp Fp (coming from τ 7→ τp 7→ τ̄p) is smooth

and Z(µ(τ̄p)) := Z(µ(τ)) ⊗Zp Fp has only two A5- and two A1-singularities. This

implies that the same is true of Z(µ(τ)), and thus the first part of (1) holds. The

statements about Picard numbers follow from Corollary 5.4 and Proposition 6.1.

To finish the proposition, we must show that Y (µ(τ))→ Eτ is relatively minimal

(so that we may then apply Theorem 2.6). Suppose that C ⊆ Y (µ(τ)) is a (−1)-

curve that maps to a point P ∈ Eτ . First note that the fibration map Y (µ(τ))→ Eτ
factors as

Y (µ(τ)) −→ Y0(µ(τ)) −→ Eτ

and the resolution map Y (µ(τ)) → Y0(µ(τ)) does not contract any (−1)-curves

(since the branch curve Z(µ(τ)) has only simple singularities). Hence the image of

C in Y0(µ(τ)) is a rational curve C ′ belonging to the fiber over P . Given that the

general fiber of Y0(µ(τ)) is a smooth curve of genus 2, the fiber of Y0(µ(τ)) must

therefore be singular. There are two possibilities to consider:

• If the surface Y0(µ(τ)) does not have a singularity above P , then C does

not meet the exceptional locus the resolution Y (µ(τ)) → Y0(µ(τ)), which

implies C ′ ' C is also a (−1)-curve. But the fiber of Y0(µ(τ)) over P
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can only contain a smooth rational curve if it is the union of two smooth

rational curves that are exchanged by the hyperelliptic involution. Since

the fibers of Y (µ(τ)) and Y0(µ(τ)) over P are isomorphic, all of this would

imply that in fact C2 = −3. This rules out this case.

• If Y0(µ(τ)) is singular at some point of the fiber over P , then Z(µ(τ)) has

a singularity over P . From the first half of the proposition (already proved

above), this means this singularity is either one of the A5-singularities de-

scribed in Theorem 5.3, or f(τ) = 0 and the singularity is one of the

A1-singularities described above. One can check, however, that in either of

these cases, the fiber of Y0(µ(τ)) is irreducible of positive geometric genus,

and so cannot contain the curve C ′ as above.

Hence Y0(µ(τ)) must be minimal.

See [Lyo] for computational details relating to this proof. �

7. Picard numbers over finite fields

In Proposition 6.1 it was shown that the Picard number of X−(µ(τ)) is at least

8, and in this section we show that this lower bound is an equality when τ = 3.

Following a method developed in [LL], this is achieved by determining the zeta

function of the reduction of Y (µ(3)) to F11, and using this to deduce the zeta

function of the reduction of X−(µ(3)) over F11, which in turn gives an upper bound

of 8 for the Picard number of X−(µ(3)) over Q.

We discuss the general idea of the calculation, but refer to [LL, §4] for more

details since the procedure is largely the same. The varieties E3 and Y (µ(3))

are defined above using polynomials with integral coefficients, and we use these

equations to give us integral models for each of them. One may check, upon reducing

modulo p = 11, that E3 is smooth and Z(µ(3)) has a singular locus consisting of

two A5-singularities. To ease notation, in this section we will write:

E := E3, Y := Y (µ(3)), Z := Z(µ(3)), X+ := X+(µ(3)), X− := X−(µ(3)),

and for a Z-scheme S we will let S̄ := S ⊗Z F11 denote its reduction modulo 11.

We now describe the zeta function of Ȳ . Given that Z and Z̄ have the same

singularity types, it follows that the reduction Ȳ of Y is smooth. Hence the Betti

numbers of Ȳ (in `-adic cohomology) are the same as those of Y . From Proposition

6.2, X+ is a smooth minimal surface with pg = q = 1 and K2 = 2, and so (arguing

as in the proof of Theorem 2.6) the Betti numbers of Y are

b0(Ȳ ) = b4(Ȳ ) = 1, b1(Ȳ ) = b3(Ȳ ) = 2, b2(Ȳ ) = 22.

One also computes the zeta function of Ē = Alb(Ȳ ) to be

Z(Ē, t) =
1 + 11t2

(1− t)(1− 11t)
.

Finally, the point R̄ ∈ Ē is defined only over F112 , and hence the same is true of the

exceptional curves arising from the two A5-singularities of Z̄. Putting this together
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with Proposition 6.1, we conclude that the zeta function of Ȳ has the form

Z(Ȳ , t) =
(1 + 11t2)(1 + 1331t2)

(1− t)(1− 14641t)P2(Ȳ , t)
,

where

P2(Ȳ , t) = (1− 11t)8(1 + 11t)5Q(t)

for some Q ∈ Z[t] of degree 9.

We can also determine the form of the closely-related zeta function of X̄ε. Us-

ing Corollary 5.4 and Proposition 6.1, along with the fact that Alb(Xε) = Ê is

isogenous to E, we may deduce that the zeta function of X̄ε has the form

(7.1) Z(X̄ε, t) =
(1 + 11t2)(1 + 1331t2)

(1− t)(1− 14641t)P2(X̄ε, t)
,

where

(7.2) P2(X̄−, t) = (1− 11t)8Q−(t)

and

(7.3) P2(X̄+, t) = (1− 11t)7Q+(t),

for some Qε ∈ Z[t], with deg(Q+) = 4, and deg(Q−) = 5.

Since we do not possess equations for X̄ε, we cannot compute its zeta function

by direct point counting. Instead, the key observation from [LL] is to use the

following two facts, both of which result from X̄ε being the quotient of Ȳ by the

free involution ιε:

• The points in X̄ε(F11) are in bijection with (unordered) pairs {P, ιε(P)}
(with P ∈ Ȳ (F112)) that are preserved by the Frobenius map.

• The polynomial P2(X̄ε, t) must divide P2(Ȳ , t) in Z[t].

Hence the general strategy is first list all points on Ȳ (F112) and analyze the ιε-

orbits to obtain the point count #X̄ε(F11). Second, the Weil Conjectures allow

us to compute Z(Ȳ , t) by counting points on Ȳ (F11d) for sufficiently many d, and

we use this to obtain several “candidates” for Z(X̄ε, t). Finally, each of these

candidates gives a prediction for the value #X̄ε(F11) and, with enough luck, only

one of the candidates will match the actual value. Here is what one finds upon

carrying this out:

Proposition 7.1. We have

Q−(t) = 1 + 6t− 99t2 + 726t3 + 14641t4

Q+(t) = (1 + 11t)(1− 30t+ 429t2 − 3630t3 + 14641t4).

Proof. With the help of Magma, we do the following:

• By analyzing the ιε and Frobenius orbits of Ȳ (F112), we find

#X̄−(F11) = 218, #X̄+(F11) = 204
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• The factor P2(Ȳ , t) in the zeta function of Ȳ is

P2(Ȳ , t) = (1− 11t)8(1 + 11t)6

· (1 + 6t− 99t2 + 726t3 + 14641t4)

· (1− 30t+ 429t2 − 3630t3 + 14641t4),

where each factor of degree 4 is irreducible over Q.

Hence each Qε(t) must divide

Q(t) = (1+11t)(1+6t−99t2 +726t3 +14641t4)(1−30t+429t2−3630t3 +14641t4).

Since P2(X̄−, t) divides P2(Ȳ , t), we use (7.2) to arrive at 3 possibilities for

P2(X̄−, t):

• P2(X̄−, t) = (1− 11t)8(1− 30t+ 429t2 − 3630t3 + 14641t4)

• P2(X̄−, t) = (1− 11t)8(1 + 6t− 99t2 + 726t3 + 14641t4)

• P2(X̄−, t) = (1− 11t)8(1 + 11t)4

Since

logZ(X̄−, t) =

∞∑
d=1

(
#X̄−(F11d)

)T d
d
,

we then plug each of these possibilities into (7.1) to obtain a candidate for Z(X̄−, t),

compute the power series expansion of logZ(X̄−, t), and check whether the coeffi-

cient of T is 218. This turns out to happen only for the second possibility.

The possibilities for P2(X̄+, t) include all of the three possibilities listed above

for P2(X̄+, t) as well as the following additional three:

• P2(X̄+, t) = (1− 11t)7(1 + 11t)(1− 30t+ 429t2 − 3630t3 + 14641t4)

• P2(X̄+, t) = (1− 11t)7(1 + 11t)(1 + 6t− 99t2 + 726t3 + 14641t4)

• P2(X̄+, t) = (1− 11t)7(1 + 11t)5

Of the six possibilities, the only one that predicts #X̄+(F11) = 204 is

P2(X̄+, t) = (1− 11t)7(1 + 11t)(1− 30t+ 429t2 − 3630t3 + 14641t4).

�

Corollary 7.2. The Picard numbers of X− over k and k̄ both equal 8. The Picard

numbers of X+ over k and k̄ are either 7 or 8.

Proof. The geometric Picard number of X− is bounded above by the geometric

Picard number of its reduction X̄−, which in turn is bounded above by the number

of roots of P2(X̄−, t) that are of the form 1
11ζ, for a root of unity ζ. This latter upper

bound equals 8, given that the quartic polynomial Q−(t/11) is not cyclotomic.

Hence Proposition 6.1 gives the result for X−.

Likewise, we learn from P2(X̄+, t) that the geometric Picard number of X+ is

at most 8, and we may apply Corollary 5.4 to obtain the second statement. �

Remark 7. Lacking any evidence to the contrary, it seems reasonable to believe

that the Picard number of X+ is 7. However, a simple application of the Weil

Conjectures shows that the number of roots P2(X̄+, t) of the form 1
11ζ has the

same parity as b2(X+) = 12, and hence 8 is the best possible upper bound one can
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obtain via the method in the proof of Corollary 7.2. The same sort of parity issue

arises when trying to verify that a given K3 surfaces has an odd Picard number,

and more involved characteristic p methods (such as those in [vL, EJ]) have been

developed to handle some of those cases. It might be possible to adapt one of those

methods for use on X+, but we have not attempted this.
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